T. Koutny, A. D. Cioppa, I. D. Falco, E. Tarantino, U. Scafuri, M. Krcma
{"title":"De–randomized Meta-Differential Evolution for Calculating and Predicting Glucose Levels","authors":"T. Koutny, A. D. Cioppa, I. D. Falco, E. Tarantino, U. Scafuri, M. Krcma","doi":"10.1109/CBMS.2019.00064","DOIUrl":null,"url":null,"abstract":"A physiological model improves delivered healthcare, when constructing a medical device. Such a model comprises a number of parameters. While an analytical method determines model parameters, an evolutionary algorithm can improve them further. As evolutionary algorithms were designed on top of random-number generators, their results are not deterministic. This raises a concern about their applicability to medical devices. Medical-device algorithm must produce an output with a minimum guaranteed accuracy. Therefore, we applied de-randomized sequences to Meta-Differential Evolution instead of using a random-number generator. Eventually, we designed an optimization method based on zooming with derandomized sequences as an alternative to the Meta-Differential Evolution. As the experimental setup, we predicted glucose-level signal to cover a blind window of glucose-monitoring signal that results from a physiological lag in glucose transportation. Completely de-randomized differential evolution exhibited the same accuracy and precision as completely non-deterministic differential evolution. They produced 93% of glucose levels with relative error less than or equal to 15%.","PeriodicalId":311634,"journal":{"name":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2019.00064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A physiological model improves delivered healthcare, when constructing a medical device. Such a model comprises a number of parameters. While an analytical method determines model parameters, an evolutionary algorithm can improve them further. As evolutionary algorithms were designed on top of random-number generators, their results are not deterministic. This raises a concern about their applicability to medical devices. Medical-device algorithm must produce an output with a minimum guaranteed accuracy. Therefore, we applied de-randomized sequences to Meta-Differential Evolution instead of using a random-number generator. Eventually, we designed an optimization method based on zooming with derandomized sequences as an alternative to the Meta-Differential Evolution. As the experimental setup, we predicted glucose-level signal to cover a blind window of glucose-monitoring signal that results from a physiological lag in glucose transportation. Completely de-randomized differential evolution exhibited the same accuracy and precision as completely non-deterministic differential evolution. They produced 93% of glucose levels with relative error less than or equal to 15%.