A compositional approach for 3D arm-hand action recognition

I. Gori, S. Fanello, F. Odone, G. Metta
{"title":"A compositional approach for 3D arm-hand action recognition","authors":"I. Gori, S. Fanello, F. Odone, G. Metta","doi":"10.1109/WORV.2013.6521926","DOIUrl":null,"url":null,"abstract":"In this paper we propose a fast and reliable vision-based framework for 3D arm-hand action modelling, learning and recognition in human-robot interaction scenarios. The architecture consists of a compositional model that divides the arm-hand action recognition problem into three levels. The bottom level is based on a simple but sufficiently accurate algorithm for the computation of the scene flow. The middle level serves to classify action primitives through descriptors obtained from 3D Histogram of Flow (3D-HOF); we further apply a sparse coding (SC) algorithm to deal with noise. Action Primitives are then modelled and classified by linear Support Vector Machines (SVMs), and we propose an on-line algorithm to cope with the real-time recognition of primitive sequences. The top level system synthesises combinations of primitives by means of a syntactic approach. In summary the main contribution of the paper is an incremental method for 3D arm-hand behaviour modelling and recognition, fully implemented and tested on the iCub robot, allowing it to learn new actions after a single demonstration.","PeriodicalId":130461,"journal":{"name":"2013 IEEE Workshop on Robot Vision (WORV)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Robot Vision (WORV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORV.2013.6521926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper we propose a fast and reliable vision-based framework for 3D arm-hand action modelling, learning and recognition in human-robot interaction scenarios. The architecture consists of a compositional model that divides the arm-hand action recognition problem into three levels. The bottom level is based on a simple but sufficiently accurate algorithm for the computation of the scene flow. The middle level serves to classify action primitives through descriptors obtained from 3D Histogram of Flow (3D-HOF); we further apply a sparse coding (SC) algorithm to deal with noise. Action Primitives are then modelled and classified by linear Support Vector Machines (SVMs), and we propose an on-line algorithm to cope with the real-time recognition of primitive sequences. The top level system synthesises combinations of primitives by means of a syntactic approach. In summary the main contribution of the paper is an incremental method for 3D arm-hand behaviour modelling and recognition, fully implemented and tested on the iCub robot, allowing it to learn new actions after a single demonstration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维手臂动作识别的合成方法
在本文中,我们提出了一个快速可靠的基于视觉的框架,用于人机交互场景下的三维手臂动作建模、学习和识别。该体系结构由一个组合模型组成,该模型将手臂动作识别问题分为三个层次。底层是基于一个简单但足够精确的算法来计算场景流。中间层通过三维流直方图(3D- hof)获得的描述符对动作基元进行分类;我们进一步应用稀疏编码(SC)算法来处理噪声。然后用线性支持向量机(svm)对动作原语进行建模和分类,并提出了一种在线算法来处理原语序列的实时识别。顶层系统通过语法方法合成原语的组合。总之,本文的主要贡献是一种3D手臂行为建模和识别的增量方法,在iCub机器人上完全实现和测试,使其在一次演示后学习新的动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated tuning of the nonlinear complementary filter for an Attitude Heading Reference observer Sensitivity evaluation of embedded code detection in imperceptible structured light sensing Fast iterative five point relative pose estimation A wireless robotic video laparo-endoscope for minimal invasive surgery Rapid explorative direct inverse kinematics learning of relevant locations for active vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1