A fully-mixed finite element method for the steady state Oberbeck–Boussinesq system

Eligio Colmenares, G. Gatica, S. Moraga, R. Ruiz-Baier
{"title":"A fully-mixed finite element method for the steady state Oberbeck–Boussinesq system","authors":"Eligio Colmenares, G. Gatica, S. Moraga, R. Ruiz-Baier","doi":"10.5802/smai-jcm.64","DOIUrl":null,"url":null,"abstract":"A new fully-mixed formulation is advanced for the stationary Oberbeck–Boussinesq problem when viscosity depends on both temperature and concentration of a solute. Following recent ideas in the context of mixed methods for Boussinesq and Navier–Stokes systems, the velocity gradient and the Bernoulli stress tensor are taken as additional field variables in the momentum and mass equilibrium equations. Similarly, the gradients of temperature and concentration together with a Bernoulli vector are considered as unknowns in the heat and mass transfer equations. Consequently, a dual-mixed approach with Dirichlet data is defined in each sub-system, and the well-known Banach and Brouwer theorems are combined with Babuška–Brezzi’s theory in each independent set of equations, yielding the solvability of the continuous and discrete schemes. We show that our development also applies to the case where the equations of thermal energy and solute transport are coupled through cross-diffusion. Appropriate finite element subspaces are specified, and optimal a priori error estimates are derived. Furthermore, a reliable and efficient residual-based a posteriori error estimator is proposed. Several numerical examples illustrate the performance of the fully-mixed scheme and of the adaptive refinement algorithm driven by the error estimator. 2020 Mathematics Subject Classification. 65N30, 65N12, 65N15, 35Q79, 80A20, 76D05, 76R10.","PeriodicalId":376888,"journal":{"name":"The SMAI journal of computational mathematics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The SMAI journal of computational mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/smai-jcm.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A new fully-mixed formulation is advanced for the stationary Oberbeck–Boussinesq problem when viscosity depends on both temperature and concentration of a solute. Following recent ideas in the context of mixed methods for Boussinesq and Navier–Stokes systems, the velocity gradient and the Bernoulli stress tensor are taken as additional field variables in the momentum and mass equilibrium equations. Similarly, the gradients of temperature and concentration together with a Bernoulli vector are considered as unknowns in the heat and mass transfer equations. Consequently, a dual-mixed approach with Dirichlet data is defined in each sub-system, and the well-known Banach and Brouwer theorems are combined with Babuška–Brezzi’s theory in each independent set of equations, yielding the solvability of the continuous and discrete schemes. We show that our development also applies to the case where the equations of thermal energy and solute transport are coupled through cross-diffusion. Appropriate finite element subspaces are specified, and optimal a priori error estimates are derived. Furthermore, a reliable and efficient residual-based a posteriori error estimator is proposed. Several numerical examples illustrate the performance of the fully-mixed scheme and of the adaptive refinement algorithm driven by the error estimator. 2020 Mathematics Subject Classification. 65N30, 65N12, 65N15, 35Q79, 80A20, 76D05, 76R10.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稳态Oberbeck-Boussinesq系统的全混合有限元法
当粘度取决于温度和溶质浓度时,提出了一种新的完全混合公式,用于固定的Oberbeck-Boussinesq问题。在Boussinesq和Navier-Stokes系统混合方法的背景下,将速度梯度和伯努利应力张量作为动量和质量平衡方程中的附加场变量。同样,温度梯度和浓度梯度以及伯努利矢量在传热传质方程中被认为是未知数。因此,在每个子系统中定义了Dirichlet数据的双混合方法,并将著名的Banach和browwer定理与Babuška-Brezzi的理论结合在每个独立的方程组中,得到了连续和离散格式的可解性。我们表明,我们的发展也适用于热能和溶质输运方程通过交叉扩散耦合的情况。给出了合适的有限元子空间,得到了最优的先验误差估计。在此基础上,提出了一种可靠、高效的基于残差的后验误差估计方法。数值算例说明了全混合方案和由误差估计器驱动的自适应改进算法的性能。2020数学学科分类。65N30, 65N12, 65N15, 35Q79, 80A20, 76D05, 76R10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid high-order methods for flow simulations in extremely large discrete fracture networks A family of second-order dissipative finite volume schemes for hyperbolic systems of conservation laws Parallel kinetic scheme for transport equations in complex toroidal geometry Initialization of the Circulant Embedding method to speed up the generation of Gaussian random fields Error Guarantees for Least Squares Approximation with Noisy Samples in Domain Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1