{"title":"An application of image processing techniques for detection of diseases on brinjal leaves using k-means clustering method","authors":"R. Anand, S. Veni, J. Aravinth","doi":"10.1109/ICRTIT.2016.7569531","DOIUrl":null,"url":null,"abstract":"This work presents a method for identifying plant leaf disease and an approach for careful detection of diseases. The goal of proposed work is to diagnose the disease of brinjal leaf using image processing and artificial neural techniques. The diseases on the brinjal are critical issue which makes the sharp decrease in the production of brinjal. The study of interest is the leaf rather than whole brinjal plant because about 85-95 % of diseases occurred on the brinjal leaf like, Bacterial Wilt, Cercospora Leaf Spot, Tobacco mosaic virus (TMV). The methodology to detect brinjal leaf disease in this work includes K-means clustering algorithm for segmentation and Neural-network for classification. The proposed detection model based artiifical neural networks are very effective in recognizing leaf diseases.","PeriodicalId":351133,"journal":{"name":"2016 International Conference on Recent Trends in Information Technology (ICRTIT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Recent Trends in Information Technology (ICRTIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2016.7569531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97
Abstract
This work presents a method for identifying plant leaf disease and an approach for careful detection of diseases. The goal of proposed work is to diagnose the disease of brinjal leaf using image processing and artificial neural techniques. The diseases on the brinjal are critical issue which makes the sharp decrease in the production of brinjal. The study of interest is the leaf rather than whole brinjal plant because about 85-95 % of diseases occurred on the brinjal leaf like, Bacterial Wilt, Cercospora Leaf Spot, Tobacco mosaic virus (TMV). The methodology to detect brinjal leaf disease in this work includes K-means clustering algorithm for segmentation and Neural-network for classification. The proposed detection model based artiifical neural networks are very effective in recognizing leaf diseases.