Modification of Air Cavity Flow Under Model Hull With Hydrodynamic Actuators

M. Pace, K. Matveev
{"title":"Modification of Air Cavity Flow Under Model Hull With Hydrodynamic Actuators","authors":"M. Pace, K. Matveev","doi":"10.1115/ajkfluids2019-4632","DOIUrl":null,"url":null,"abstract":"\n Air cavities employed under ship hulls can result in significant decrease of the water frictional drag by reducing the hull wetted area. However, these cavities usually perform well only in a limited range of the ship speed and attitude. In off-design states and in the presence of sea waves, efficient air cavities covering large areas of the hull are difficult to form and maintain. This problem can be potentially addressed with help of hydrodynamic actuators, such as compact hydrofoils, tabs, and spoilers, which can assist with forming and maintaining air cavities under ship hulls. In this study, exploratory tests have been conducted with a simplistic small-scale hull having a bottom recess. Air was supplied into the recess to produce an air cavity, and several actuators were implemented and manually controlled during the tests. Subjected to external water flow, the air cavity under the hull was found to be responsive to variable positions of the actuators. Positive effects on the air cavity produced with specific actuator settings are identified and discussed in the paper. A series of experimental photographs of the air-water interface are shown for various actuator settings. The air flow rates needed to establish and maintain a large air cavity under the model hull are also reported.","PeriodicalId":322380,"journal":{"name":"Volume 5: Multiphase Flow","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-4632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Air cavities employed under ship hulls can result in significant decrease of the water frictional drag by reducing the hull wetted area. However, these cavities usually perform well only in a limited range of the ship speed and attitude. In off-design states and in the presence of sea waves, efficient air cavities covering large areas of the hull are difficult to form and maintain. This problem can be potentially addressed with help of hydrodynamic actuators, such as compact hydrofoils, tabs, and spoilers, which can assist with forming and maintaining air cavities under ship hulls. In this study, exploratory tests have been conducted with a simplistic small-scale hull having a bottom recess. Air was supplied into the recess to produce an air cavity, and several actuators were implemented and manually controlled during the tests. Subjected to external water flow, the air cavity under the hull was found to be responsive to variable positions of the actuators. Positive effects on the air cavity produced with specific actuator settings are identified and discussed in the paper. A series of experimental photographs of the air-water interface are shown for various actuator settings. The air flow rates needed to establish and maintain a large air cavity under the model hull are also reported.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用水动力作动器对模型船体空腔流动的修正
在船体下采用气腔可以通过减小船体的湿化面积而显著降低水摩擦阻力。然而,这些空腔通常只在有限的航速和姿态范围内表现良好。在非设计状态和海浪存在的情况下,覆盖船体大面积的有效气腔很难形成和维护。这个问题可以通过水动力致动器来解决,比如紧凑的水翼、压片和扰流板,它们可以帮助形成和维持船体下的空气腔。在这项研究中,探索性试验已经进行了一个简单的小型船体底部凹槽。向凹槽中注入空气以形成一个空腔,在测试过程中实施了几个执行器并进行了手动控制。受到外部水流的影响,船体下的空腔对执行器的不同位置有响应。本文确定并讨论了特定执行器设置对空腔产生的积极影响。一系列的实验照片的空气-水界面显示了不同的执行器设置。还报告了在模型船体下建立和维持一个大空腔所需的空气流速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transient Approach for Estimating Concentration of Water Droplets in Oil and Corrosion Assessment in the Oil and Gas Industry Effect of Interstage Injection on Compressor Flow Characteristic Air Entrainment and Bubble Generation by a Hydrofoil in a Turbulent Channel Flow Experimental Study of Bubble-Droplet Interactions in Improved Primary Oil Separation Effects of Liquid Viscosity on Laser-Induced Shock Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1