Small target detection and tracking based on the background elimination and Kalman filter

A. Dehghani, A. Pourmohammad
{"title":"Small target detection and tracking based on the background elimination and Kalman filter","authors":"A. Dehghani, A. Pourmohammad","doi":"10.1109/AISP.2015.7123509","DOIUrl":null,"url":null,"abstract":"The problem of small target detection in infrared images is one of the most important areas of research in passive defense systems. This detection method is classified in the Electro optic systems group. Generally, the challenges of the field are divided into two parts: detection and tracking. 1) Due to long detection distance, the amplitude of target signal compared with heavy background clutter is weak. On the other hand, targets appear with few pixels, so that there is no obvious and usable structural and contextual information. 2) Another challenge in tracking small targets is partial obstruction or closeness of background's brightness level to brightness level of the desired target (fading). In this paper, first background is removed by subtracting row mean, then the target are tracking using morphological filtering, thresholding the identified targets and finally by Kalman filter.","PeriodicalId":405857,"journal":{"name":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2015.7123509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The problem of small target detection in infrared images is one of the most important areas of research in passive defense systems. This detection method is classified in the Electro optic systems group. Generally, the challenges of the field are divided into two parts: detection and tracking. 1) Due to long detection distance, the amplitude of target signal compared with heavy background clutter is weak. On the other hand, targets appear with few pixels, so that there is no obvious and usable structural and contextual information. 2) Another challenge in tracking small targets is partial obstruction or closeness of background's brightness level to brightness level of the desired target (fading). In this paper, first background is removed by subtracting row mean, then the target are tracking using morphological filtering, thresholding the identified targets and finally by Kalman filter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于背景消去和卡尔曼滤波的小目标检测与跟踪
红外图像中的小目标检测问题是被动防御系统的重要研究领域之一。这种检测方法属于电光系统组。一般来说,该领域的挑战分为两个部分:检测和跟踪。1)由于探测距离较远,目标信号的幅值相对于背景杂波较弱。另一方面,目标的像素很少,因此没有明显可用的结构和上下文信息。2)跟踪小目标的另一个挑战是背景的亮度水平与期望目标的亮度水平的部分阻碍或接近(衰落)。本文首先通过去除行均值的方法去除背景,然后对目标进行形态学滤波,对识别出的目标进行阈值化,最后利用卡尔曼滤波对目标进行跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small target detection and tracking based on the background elimination and Kalman filter A novel image watermarking scheme using blocks coefficient in DHT domain Latent space model for analysis of conventions A new algorithm for data clustering based on gravitational search algorithm and genetic operators Learning a new distance metric to improve an SVM-clustering based intrusion detection system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1