{"title":"Power Profiling of a Reduced Data Movement Algorithm for Neutron Cross Section Data in Monte Carlo Simulations","authors":"John R. Tramm, Kazutomo Yoshii, A. Siegel","doi":"10.1109/Co-HPC.2014.9","DOIUrl":null,"url":null,"abstract":"Current Monte Carlo neutron transport applications use continuous energy cross section data to provide the statistical foundation for particle trajectories. This \"classical\" algorithm requires storage and random access of very large data structures. Recently, Forget et al.[1] reported on a fundamentally new approach, based on multipole expansions, that distills cross section data down to a more abstract mathematical format. Their formulation greatly reduces memory storage and improves data locality at the cost of also increasing floating point computation. In the present study we determine the hardware performance parameters, including power usage, of the multipole algorithm relative to the classical continuous energy algorithm. This study is done to guage the suitability of both algorithms for use on next-generation high performance computing platforms.","PeriodicalId":136638,"journal":{"name":"2014 Hardware-Software Co-Design for High Performance Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Hardware-Software Co-Design for High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Co-HPC.2014.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Current Monte Carlo neutron transport applications use continuous energy cross section data to provide the statistical foundation for particle trajectories. This "classical" algorithm requires storage and random access of very large data structures. Recently, Forget et al.[1] reported on a fundamentally new approach, based on multipole expansions, that distills cross section data down to a more abstract mathematical format. Their formulation greatly reduces memory storage and improves data locality at the cost of also increasing floating point computation. In the present study we determine the hardware performance parameters, including power usage, of the multipole algorithm relative to the classical continuous energy algorithm. This study is done to guage the suitability of both algorithms for use on next-generation high performance computing platforms.