Zanhao Liang, Xiaoqin Wang, Zhuo Chen, Xiaonan Luo
{"title":"Body Temperature Prediction with Recurrent Neural Network and its Variants","authors":"Zanhao Liang, Xiaoqin Wang, Zhuo Chen, Xiaonan Luo","doi":"10.1109/ICICIP53388.2021.9642166","DOIUrl":null,"url":null,"abstract":"A method to predict how the human body temperature changes over time is presented in this paper. In this work, classic recurrent neural network and its two variants are used to predict body temperature, and their predictions are compared to evaluate performance. To collect the data used for training, videos which save the temperature value in the form of pixel are recorded with FLIR ONE PRO LT, a thermal sensor, and frames extracted from the video are converted into numbers with optical character recognition technology. To make our method more valuable, the temperatures at different condition, like motionless and walking, are predicted. Experiment results show that classic recurrent neural network outperforms its two variants, this may because GRU and LSTM have more parameters than classic RNN, when training data are not enough, GRU and LSTM are more likely to overfit than classic RNN.","PeriodicalId":435799,"journal":{"name":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"56 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP53388.2021.9642166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A method to predict how the human body temperature changes over time is presented in this paper. In this work, classic recurrent neural network and its two variants are used to predict body temperature, and their predictions are compared to evaluate performance. To collect the data used for training, videos which save the temperature value in the form of pixel are recorded with FLIR ONE PRO LT, a thermal sensor, and frames extracted from the video are converted into numbers with optical character recognition technology. To make our method more valuable, the temperatures at different condition, like motionless and walking, are predicted. Experiment results show that classic recurrent neural network outperforms its two variants, this may because GRU and LSTM have more parameters than classic RNN, when training data are not enough, GRU and LSTM are more likely to overfit than classic RNN.
本文提出了一种预测人体温度随时间变化的方法。在这项工作中,使用经典的递归神经网络及其两种变体来预测体温,并将其预测结果进行比较以评估性能。为了收集训练数据,使用热传感器FLIR ONE PRO LT记录以像素形式保存温度值的视频,并使用光学字符识别技术将视频中提取的帧转换为数字。为了使我们的方法更有价值,我们预测了不同状态下的温度,比如静止和行走。实验结果表明,经典递归神经网络优于其两种变体,这可能是因为GRU和LSTM比经典RNN具有更多的参数,当训练数据不足时,GRU和LSTM比经典RNN更容易过拟合。