Statistical debugging: simultaneous identification of multiple bugs

A. Zheng, Michael I. Jordan, B. Liblit, M. Naik, A. Aiken
{"title":"Statistical debugging: simultaneous identification of multiple bugs","authors":"A. Zheng, Michael I. Jordan, B. Liblit, M. Naik, A. Aiken","doi":"10.1145/1143844.1143983","DOIUrl":null,"url":null,"abstract":"We describe a statistical approach to software debugging in the presence of multiple bugs. Due to sparse sampling issues and complex interaction between program predicates, many generic off-the-shelf algorithms fail to select useful bug predictors. Taking inspiration from bi-clustering algorithms, we propose an iterative collective voting scheme for the program runs and predicates. We demonstrate successful debugging results on several real world programs and a large debugging benchmark suite.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"168","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 168

Abstract

We describe a statistical approach to software debugging in the presence of multiple bugs. Due to sparse sampling issues and complex interaction between program predicates, many generic off-the-shelf algorithms fail to select useful bug predictors. Taking inspiration from bi-clustering algorithms, we propose an iterative collective voting scheme for the program runs and predicates. We demonstrate successful debugging results on several real world programs and a large debugging benchmark suite.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
统计调试:同时识别多个bug
我们描述了一种在存在多个错误的情况下进行软件调试的统计方法。由于稀疏的采样问题和程序谓词之间复杂的交互,许多通用的现成算法无法选择有用的错误预测器。受双聚类算法的启发,我们提出了一个迭代的程序运行和谓词的集体投票方案。我们在几个真实世界的程序和一个大型调试基准套件上演示了成功的调试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1