Dependability, power, and performance trade-off on a multicore processor

Toshinori Sato, Toshimasa Funaki
{"title":"Dependability, power, and performance trade-off on a multicore processor","authors":"Toshinori Sato, Toshimasa Funaki","doi":"10.1109/ASPDAC.2008.4484044","DOIUrl":null,"url":null,"abstract":"As deep submicron technologies are advanced, we face new challenges, such as power consumption and soft errors. A naive technique, which utilizes emerging multicore processors and relies upon thread-level redundancy to detect soft errors, is power hungry. It consumes at least two times larger power than the conventional single-threaded processor does. This paper investigates a trade-off between dependability and power on a multicore processor, which is named multiple clustered core processor (MCCP). It is proposed to adapt processor resources according to the requested performance. A new metric to evaluate a trade-off between dependability, power, and performance is proposed. It is the product of soft error rate and the popular energy-delay product. We name it energy, delay, and upset rate product (ED UP). Detailed simulations show that the MCCP exploiting the adaptable technique improves the EDUP by up to 21% when it is compared with the one exploiting the naive technique.","PeriodicalId":277556,"journal":{"name":"2008 Asia and South Pacific Design Automation Conference","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Asia and South Pacific Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2008.4484044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

As deep submicron technologies are advanced, we face new challenges, such as power consumption and soft errors. A naive technique, which utilizes emerging multicore processors and relies upon thread-level redundancy to detect soft errors, is power hungry. It consumes at least two times larger power than the conventional single-threaded processor does. This paper investigates a trade-off between dependability and power on a multicore processor, which is named multiple clustered core processor (MCCP). It is proposed to adapt processor resources according to the requested performance. A new metric to evaluate a trade-off between dependability, power, and performance is proposed. It is the product of soft error rate and the popular energy-delay product. We name it energy, delay, and upset rate product (ED UP). Detailed simulations show that the MCCP exploiting the adaptable technique improves the EDUP by up to 21% when it is compared with the one exploiting the naive technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多核处理器上的可靠性、功率和性能权衡
随着深亚微米技术的进步,我们面临着功耗和软误差等新的挑战。一种利用新兴的多核处理器并依赖于线程级冗余来检测软错误的幼稚技术非常耗电。它消耗的能量至少是传统单线程处理器的两倍。本文研究了多核集群核处理器(MCCP)的可靠性和功耗之间的权衡。提出了根据所要求的性能调整处理器资源的方法。提出了一种新的指标来评估可靠性、功率和性能之间的权衡。它是软误差率与流行的能量延迟积的乘积。我们将其命名为能量、延迟和扰动率积(ED UP)。详细的仿真结果表明,采用自适应技术的MCCP与采用原始技术的MCCP相比,EDUP提高了21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Panel: Best ways to use billions of devices on a chip Large-scale fixed-outline floorplanning design using convex optimization techniques The Shining embedded system design methodology based on self dynamic reconfigurable architectures Hybrid solid-state disks: Combining heterogeneous NAND flash in large SSDs Load scheduling: Reducing pressure on distributed register files for free
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1