On Parallelizing Geometrical PCA Approximation

Alina L. Machidon, C. Ciobanu, O. Machidon, P. Ogrutan
{"title":"On Parallelizing Geometrical PCA Approximation","authors":"Alina L. Machidon, C. Ciobanu, O. Machidon, P. Ogrutan","doi":"10.1109/ROEDUNET.2019.8909644","DOIUrl":null,"url":null,"abstract":"Remote sensing data has known an explosive growth in the past decade. This has led to the need for efficient dimensionality reduction techniques, mathematical procedures that transform the high-dimensional data into a meaningful, reduced representation. Principal Component Analysis (PCA) is a well-known dimensionality reduction technique used in the field of hyperspectral satellite images. However, PCA suffers from high computational costs and increased complexity, an issue that led to elaborating PCA adaptations capable of running on multi-core computing architectures. This paper proposes a parallel implementation of the geometrical PCA approximation (gaPCA) algorithm. Three parallel implementations are studied: two on multi-core CPUs and a NVIDIA Graphics Processing Units (GPU) CUDA accelerated implementation. Our results show significant speedups of the parallel implementations when applied on hyperspectral image datasets. Our results show that on the Intel Core i5 CPU, Python multi-core implementation is up to 2.01$\\times$ faster than its Matlab equivalent. Our GPU PyCUDA implementation is considerably faster than both our Python multi-core CPU implementations: up to 1.76$\\times$ faster than Intel Core i5-6200U and up to 5.72$\\times$ faster than the NVIDIA Jetson Nano quad-core ARM A53 CPU. We performed data analysis on the output data for the three methods and the maxim relative error was less than 0.001%.","PeriodicalId":309683,"journal":{"name":"2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 18th RoEduNet Conference: Networking in Education and Research (RoEduNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROEDUNET.2019.8909644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Remote sensing data has known an explosive growth in the past decade. This has led to the need for efficient dimensionality reduction techniques, mathematical procedures that transform the high-dimensional data into a meaningful, reduced representation. Principal Component Analysis (PCA) is a well-known dimensionality reduction technique used in the field of hyperspectral satellite images. However, PCA suffers from high computational costs and increased complexity, an issue that led to elaborating PCA adaptations capable of running on multi-core computing architectures. This paper proposes a parallel implementation of the geometrical PCA approximation (gaPCA) algorithm. Three parallel implementations are studied: two on multi-core CPUs and a NVIDIA Graphics Processing Units (GPU) CUDA accelerated implementation. Our results show significant speedups of the parallel implementations when applied on hyperspectral image datasets. Our results show that on the Intel Core i5 CPU, Python multi-core implementation is up to 2.01$\times$ faster than its Matlab equivalent. Our GPU PyCUDA implementation is considerably faster than both our Python multi-core CPU implementations: up to 1.76$\times$ faster than Intel Core i5-6200U and up to 5.72$\times$ faster than the NVIDIA Jetson Nano quad-core ARM A53 CPU. We performed data analysis on the output data for the three methods and the maxim relative error was less than 0.001%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行化几何PCA逼近
遥感数据在过去十年中呈爆炸式增长。这导致需要有效的降维技术,将高维数据转换为有意义的,降维的表示的数学过程。主成分分析(PCA)是一种应用于高光谱卫星图像的降维技术。然而,PCA的计算成本高且复杂性增加,这个问题导致了能够在多核计算体系结构上运行的PCA调整。本文提出了一种几何主成分近似(gaPCA)算法的并行实现。研究了三种并行实现:两种多核cpu和一种NVIDIA图形处理单元(GPU) CUDA加速实现。我们的结果表明,当应用于高光谱图像数据集时,并行实现的速度显着提高。我们的结果表明,在英特尔酷睿i5 CPU上,Python多核实现比Matlab等效实现快2.01倍。我们的GPU PyCUDA实现比我们的Python多核CPU实现要快得多:比英特尔酷睿i5-6200U快1.76美元,比NVIDIA Jetson Nano四核ARM A53 CPU快5.72美元。我们对三种方法的输出数据进行了数据分析,最大相对误差小于0.001%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adding Custom Sandbox Profiles to iOS Apps Double Standard Method for Designing Adaptive Backup Systems Performance analysis in private and public Cloud infrastructures Open-LTE Call Emulator in Software Defined Radio The Relational Parts of Speech in Text Analysis for Definition Detection, for Romanian Language
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1