A Novel Evolution-Based Recommendation System

Yi-Cheng Chen, Yen-Lung Chu, Lin Hui, Sheng-Chih Chen, Tipajin Thaipisutikul, Kai-Ze Weng
{"title":"A Novel Evolution-Based Recommendation System","authors":"Yi-Cheng Chen, Yen-Lung Chu, Lin Hui, Sheng-Chih Chen, Tipajin Thaipisutikul, Kai-Ze Weng","doi":"10.1109/Ubi-Media.2019.00017","DOIUrl":null,"url":null,"abstract":"Matrix factorization (MF) technique has been widely utilized in recommendation systems due to the precise prediction of users' interests. Prior MF-based methods adapt the overall rating to make the recommendation by extracting latent factors from users and items. However, in real applications, people's preferences usually vary with time; the traditional MF-based methods could not properly capture the change of users' interests. In this paper, by incorporating the recurrent neural network (RNN) into MF, we develop a novel recommendation system, M-RNN-F, to effectively describe the preference evolution of users over time. A learning model is proposed to capture the evolution pattern and predict the user preference in the future. The experimental results show that M-RNN-F performs better than other state-of-the-art recommendation algorithms. In addition, we conduct the experiments on real world dataset to demonstrate the practicability.","PeriodicalId":259542,"journal":{"name":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Twelfth International Conference on Ubi-Media Computing (Ubi-Media)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Ubi-Media.2019.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Matrix factorization (MF) technique has been widely utilized in recommendation systems due to the precise prediction of users' interests. Prior MF-based methods adapt the overall rating to make the recommendation by extracting latent factors from users and items. However, in real applications, people's preferences usually vary with time; the traditional MF-based methods could not properly capture the change of users' interests. In this paper, by incorporating the recurrent neural network (RNN) into MF, we develop a novel recommendation system, M-RNN-F, to effectively describe the preference evolution of users over time. A learning model is proposed to capture the evolution pattern and predict the user preference in the future. The experimental results show that M-RNN-F performs better than other state-of-the-art recommendation algorithms. In addition, we conduct the experiments on real world dataset to demonstrate the practicability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于进化的推荐系统
矩阵分解(Matrix factorization, MF)技术由于能够准确预测用户的兴趣,在推荐系统中得到了广泛的应用。先前的基于mf的方法通过从用户和项目中提取潜在因素来调整总体评分来进行推荐。然而,在实际应用中,人们的偏好通常会随着时间而变化;传统的基于mf的方法不能很好地捕捉用户兴趣的变化。在本文中,我们将递归神经网络(RNN)结合到MF中,开发了一种新的推荐系统M-RNN-F,以有效地描述用户随时间的偏好演变。提出了一种学习模型来捕捉用户的演化模式并预测未来的用户偏好。实验结果表明,M-RNN-F算法的性能优于其他最先进的推荐算法。此外,我们还在真实数据集上进行了实验,以证明该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Influence of exercise modality on cardiac parasympathetic and sympathetic indices during post-exercise recovery
IF 4 2区 医学Journal of science and medicine in sportPub Date : 2018-10-01 DOI: 10.1016/j.jsams.2018.01.015
Scott Michael , Ollie Jay , Kenneth S. Graham , Glen M. Davis
Robust and time-resolved estimation of cardiac sympathetic and parasympathetic indices
IF 0 bioRxivPub Date : 2023-11-18 DOI: 10.1101/2023.11.18.567211
D. Candia-Rivera, F. de Vico Fallani, Mario Chavez
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Target-Monitoring Learning Companion Design DeepBonds: A Deep Learning Approach to Predicting United States Treasury Yield Clinically Applicable Deep Learning for Diagnosis of Diabetic Retinopathy Markerless Indoor/Outdoor Augmented Reality Navigation Device Based on ORB-Visual-Odometry Positioning Estimation and Wall-Floor-Boundary Image Registration [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1