Data mining the memory access stream to detect anomalous application behavior

Francis B. Moreira, M. Diener, P. Navaux, I. Koren
{"title":"Data mining the memory access stream to detect anomalous application behavior","authors":"Francis B. Moreira, M. Diener, P. Navaux, I. Koren","doi":"10.1145/3075564.3075578","DOIUrl":null,"url":null,"abstract":"Detecting anomalous application executions is a challenging problem, due to the diversity of anomalies that can occur, such as programming bugs, silent data corruption, or even malicious code corruption. Moreover, the similarity to a regular execution that can occur in these cases, especially in silent data corruption, makes distinction from normal executions difficult. In this paper, we develop a mechanism that can detect such anomalous executions based on changes in the memory access pattern of an application. We analyze memory patterns using a two-level machine learning approach. First, we classify the behavior of different memory access periods within applications using Gaussian mixtures. Then, based on these classifications, we construct matrix representations of Markov chains to obtain information regarding the temporal behavior of these memory accesses. Based on metrics of matrix similarity, we can classify whether the application behaves as expected or anomalously. Using gradient boosting on the metrics of matrix similarity, our technique correctly classifies more than 85% of all executions, identifying instances of the same application and different applications. We can also detect a range of faulty executions caused by benign or malicious permanent bit flips in the code section.","PeriodicalId":398898,"journal":{"name":"Proceedings of the Computing Frontiers Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Computing Frontiers Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3075564.3075578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Detecting anomalous application executions is a challenging problem, due to the diversity of anomalies that can occur, such as programming bugs, silent data corruption, or even malicious code corruption. Moreover, the similarity to a regular execution that can occur in these cases, especially in silent data corruption, makes distinction from normal executions difficult. In this paper, we develop a mechanism that can detect such anomalous executions based on changes in the memory access pattern of an application. We analyze memory patterns using a two-level machine learning approach. First, we classify the behavior of different memory access periods within applications using Gaussian mixtures. Then, based on these classifications, we construct matrix representations of Markov chains to obtain information regarding the temporal behavior of these memory accesses. Based on metrics of matrix similarity, we can classify whether the application behaves as expected or anomalously. Using gradient boosting on the metrics of matrix similarity, our technique correctly classifies more than 85% of all executions, identifying instances of the same application and different applications. We can also detect a range of faulty executions caused by benign or malicious permanent bit flips in the code section.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据挖掘内存访问流,以检测异常的应用程序行为
检测异常的应用程序执行是一个具有挑战性的问题,因为可能发生各种各样的异常,例如编程错误、静默数据损坏,甚至恶意代码损坏。此外,在这些情况下,特别是在静默数据损坏情况下,与常规执行的相似性使得很难区分正常执行。在本文中,我们开发了一种机制,可以根据应用程序内存访问模式的变化来检测这种异常执行。我们使用两级机器学习方法分析记忆模式。首先,我们使用高斯混合对应用程序中不同内存访问周期的行为进行分类。然后,基于这些分类,我们构建了马尔可夫链的矩阵表示,以获得有关这些内存访问的时间行为的信息。基于矩阵相似度的度量,我们可以对应用程序的行为是否符合预期或异常进行分类。在矩阵相似性度量上使用梯度增强,我们的技术正确地分类了85%以上的执行,识别了相同应用程序和不同应用程序的实例。我们还可以检测由代码段中良性或恶意的永久位翻转引起的一系列错误执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware Support for Secure Stream Processing in Cloud Environments Private inter-network routing for Wireless Sensor Networks and the Internet of Things Analytical Performance Modeling and Validation of Intel's Xeon Phi Architecture Design of S-boxes Defined with Cellular Automata Rules Cloud Workload Prediction by Means of Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1