{"title":"Effects of macrophytes on phytoplankton: nutrient uptake versus allelopathy","authors":"Sabine Hilt (nee Körner), P. Lombardo","doi":"10.1080/03680770.2009.11902323","DOIUrl":null,"url":null,"abstract":"remainsdifficulttoiso-late as a mechanism (Gross et al. 2007).One potentially confounding factor is competitionbetween macrophytes and phytoplankton for nutrients. Forrooted macrophytes, sediments may be the principal site foruptake of phosphorus and nitrogen as well as iron, manga-nese, micronutrients, and trace metals (Barko et al. 1991).Availability of these same elements for phytoplanktongrowth within macrophyte stands may be low due to uptakeby epiphyton or incr eased nitrification (Korner 1999) anddenitrification (Weisner et al. 1994). Nonrooted macro-phyte species cannot use the sediment nutrient pool, and dis-solved products important for macrophyte growth are takenup principally from the water column (Barko et al. 1988).Though plants may not be a nutrient (especially phosphorus)sink over the long-term (weeks to months; Lombardo &Cooke 2003), net foliar uptake in the short term (days), atwhich allelopathy experiments are often performed, may bequite high (Pelton et al. 1998, Lombardo & Cooke 2003).The nutrient constraint on phytoplankton due to uptake bymacrophytes is likely more significant in the lower end of thenutrient regime (Jeppesen et al. 1999).Coexistence experiments testing allelopathic effects ofmacrophytes on phytoplankton are therefore often performedat very high nutrient concentrations, although sensitivity ofphytoplankton to allelochemicals is expected to be higherunder additional stress such as nutrient limitation (Reigosaet al. 1999, Hilt et al. 2006). Inderjit & Del Moral(1997) wondered whether separating resource competitionfrom allelopathy is at all realistic.Here we analyze the nutrient dynamics observed in labora-tory-scale coexistence experiments that targeted allelopathiceffects of","PeriodicalId":404196,"journal":{"name":"Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03680770.2009.11902323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
remainsdifficulttoiso-late as a mechanism (Gross et al. 2007).One potentially confounding factor is competitionbetween macrophytes and phytoplankton for nutrients. Forrooted macrophytes, sediments may be the principal site foruptake of phosphorus and nitrogen as well as iron, manga-nese, micronutrients, and trace metals (Barko et al. 1991).Availability of these same elements for phytoplanktongrowth within macrophyte stands may be low due to uptakeby epiphyton or incr eased nitrification (Korner 1999) anddenitrification (Weisner et al. 1994). Nonrooted macro-phyte species cannot use the sediment nutrient pool, and dis-solved products important for macrophyte growth are takenup principally from the water column (Barko et al. 1988).Though plants may not be a nutrient (especially phosphorus)sink over the long-term (weeks to months; Lombardo &Cooke 2003), net foliar uptake in the short term (days), atwhich allelopathy experiments are often performed, may bequite high (Pelton et al. 1998, Lombardo & Cooke 2003).The nutrient constraint on phytoplankton due to uptake bymacrophytes is likely more significant in the lower end of thenutrient regime (Jeppesen et al. 1999).Coexistence experiments testing allelopathic effects ofmacrophytes on phytoplankton are therefore often performedat very high nutrient concentrations, although sensitivity ofphytoplankton to allelochemicals is expected to be higherunder additional stress such as nutrient limitation (Reigosaet al. 1999, Hilt et al. 2006). Inderjit & Del Moral(1997) wondered whether separating resource competitionfrom allelopathy is at all realistic.Here we analyze the nutrient dynamics observed in labora-tory-scale coexistence experiments that targeted allelopathiceffects of
作为一种机制,仍然难以确定(Gross et al. 2007)。一个潜在的混淆因素是大型植物和浮游植物之间对营养物质的竞争。对于有根的大型植物,沉积物可能是吸收磷和氮以及铁、锰、微量营养素和微量金属的主要场所(Barko等人,1991年)。由于附生植物的吸收或硝化作用(Korner 1999)和反硝化作用(Weisner et al. 1994)的增加,这些元素在大型植物林内浮游植物生长的可用性可能较低。无根的大型植物物种不能利用沉积物营养池,对大型植物生长重要的溶解产物主要来自水柱(Barko et al. 1988)。虽然植物可能不是长期(几周到几个月)的营养(尤其是磷)汇;Lombardo &Cooke 2003),短期(天)的净叶面吸收量可能相当高(Pelton et al. 1998, Lombardo &Cooke 2003),化感作用实验经常在此进行。由于被大型植物吸收而对浮游植物的营养限制可能在营养体系的低端更为显著(Jeppesen et al. 1999)。因此,测试大型植物对浮游植物化感作用的共存实验通常是在非常高的营养浓度下进行的,尽管浮游植物对化感物质的敏感性预计在额外的压力下会更高,如营养限制(Reigosaet al. 1999, Hilt et al. 2006)。Inderjit & Del Moral(1997)怀疑将资源竞争与化感作用分开是否现实。在这里,我们分析了在实验室规模的共存实验中观察到的营养动态,以化感作用为目标