Sea ice type classification based on random forest machine learning with Cryosat-2 altimeter data

Xiaoyi Shen, Jie Zhang, J. Meng, C. Ke
{"title":"Sea ice type classification based on random forest machine learning with Cryosat-2 altimeter data","authors":"Xiaoyi Shen, Jie Zhang, J. Meng, C. Ke","doi":"10.1109/RSIP.2017.7958792","DOIUrl":null,"url":null,"abstract":"Sea ice type is the most sensitive variables in Arctic ice monitoring and its detailed information is essential for ice situation evaluation, climate prediction and vessels navigating. In this study, we analyzed the different sea ice types with the Cryosat-2 (CS-2) SAR mode waveform data. The waveform of CS-2 data was describe by a set of parameters: pulse peakiness (PP), leading-edge width (LeW), trailing-edge width (TeW), stack standard deviation (SSD) and Maximum value of the echo waveform (Max)] and backscatter coefficient (Sigma0). Random forest (RF) classifier was chosen to classify ice type and the classification results were compared with Arctic and Antarctic Research Institute (AARI) operational ice charts. The results show that 85% of the Arctic surface type can be correctly classified from November 2015 to May 2016, 83% of the FYI can be correctly identified which is the domain ice type in Arctic. In comparison with Bayesian and K nearest-neighbor classifiers, the classification accuracy of RF increased by 5% and 3% respectively.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Sea ice type is the most sensitive variables in Arctic ice monitoring and its detailed information is essential for ice situation evaluation, climate prediction and vessels navigating. In this study, we analyzed the different sea ice types with the Cryosat-2 (CS-2) SAR mode waveform data. The waveform of CS-2 data was describe by a set of parameters: pulse peakiness (PP), leading-edge width (LeW), trailing-edge width (TeW), stack standard deviation (SSD) and Maximum value of the echo waveform (Max)] and backscatter coefficient (Sigma0). Random forest (RF) classifier was chosen to classify ice type and the classification results were compared with Arctic and Antarctic Research Institute (AARI) operational ice charts. The results show that 85% of the Arctic surface type can be correctly classified from November 2015 to May 2016, 83% of the FYI can be correctly identified which is the domain ice type in Arctic. In comparison with Bayesian and K nearest-neighbor classifiers, the classification accuracy of RF increased by 5% and 3% respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Cryosat-2高度计数据的随机森林机器学习海冰类型分类
海冰类型是北极海冰监测中最敏感的变量,其详细信息对冰情评估、气候预报和船舶航行至关重要。在本研究中,我们利用Cryosat-2 (CS-2) SAR模式波形数据分析了不同海冰类型。CS-2数据的波形由脉冲峰值(PP)、前缘宽度(LeW)、尾缘宽度(TeW)、叠加标准差(SSD)、回波波形最大值(Max)和后向散射系数(Sigma0)等参数来描述。采用随机森林(Random forest, RF)分类器对冰型进行分类,并将分类结果与北极南极研究所(Arctic and Antarctic Research Institute, AARI)的业务冰图进行比较。结果表明,2015年11月至2016年5月,85%的北极地表类型可以正确分类,83%的FYI可以正确识别,这是北极的域冰类型。与贝叶斯和K近邻分类器相比,RF的分类准确率分别提高了5%和3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithm of remote sensing image matching based on corner-point A weakly supervised road extraction approach via deep convolutional nets based image segmentation Hyperspectral image classification based on spectral-spatial feature extraction An enhanced deep convolutional neural network for densely packed objects detection in remote sensing images The development of deep learning in synthetic aperture radar imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1