{"title":"Effect of Synthesis Temperature on the Crystallization and Growth of In Situ Prepared Nanohydroxyapatite in Chitosan Matrix","authors":"H. Elhendawi, R. Felfel, B. A. El-Hady, F. Reicha","doi":"10.1155/2014/897468","DOIUrl":null,"url":null,"abstract":"Hydroxyapatite nanoparticles (nHA) have been used in different biomedical applications where certain particle size distribution and morphology are required. Chitosan/hydroxyapatite (CS/HA) nanocomposites were prepared using in situ coprecipitation technique and the effect of the reaction temperature on the crystallization and particle growth of the prepared nanohydroxyapatite particles was investigated. The composites were prepared at different synthesis temperatures (−10, 37, and 60°C). XRD, FTIR, thermal analysis, TEM and SEM techniques were used to characterize the prepared specimens. It was found that the increase in processing temperature had a great affect on particle size and crystal structure of nHA. The low temperature (−10°C) showed inhabitation of the HA growth in c-direction and low crystallinity which was confirmed using XRD and electron diffraction pattern of TEM. Molar ratio of the bone-like apatite layer (Ca/P) for the nanocomposite prepared at 60°C was higher was higher than the composites prepared at lower temperatures (37 and −10°C).","PeriodicalId":374191,"journal":{"name":"ISRN Biomaterials","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/897468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Hydroxyapatite nanoparticles (nHA) have been used in different biomedical applications where certain particle size distribution and morphology are required. Chitosan/hydroxyapatite (CS/HA) nanocomposites were prepared using in situ coprecipitation technique and the effect of the reaction temperature on the crystallization and particle growth of the prepared nanohydroxyapatite particles was investigated. The composites were prepared at different synthesis temperatures (−10, 37, and 60°C). XRD, FTIR, thermal analysis, TEM and SEM techniques were used to characterize the prepared specimens. It was found that the increase in processing temperature had a great affect on particle size and crystal structure of nHA. The low temperature (−10°C) showed inhabitation of the HA growth in c-direction and low crystallinity which was confirmed using XRD and electron diffraction pattern of TEM. Molar ratio of the bone-like apatite layer (Ca/P) for the nanocomposite prepared at 60°C was higher was higher than the composites prepared at lower temperatures (37 and −10°C).