Predicting the Confidential Words in Japanese Judicial Precedents Using the Neural Network Combined POS Tag

Masakazu Kanazawa, Atsushi Ito, Kazuyuki Yamasawa, Takehiko Kasahara, Yuya Kiryu
{"title":"Predicting the Confidential Words in Japanese Judicial Precedents Using the Neural Network Combined POS Tag","authors":"Masakazu Kanazawa, Atsushi Ito, Kazuyuki Yamasawa, Takehiko Kasahara, Yuya Kiryu","doi":"10.1109/CSCI49370.2019.00066","DOIUrl":null,"url":null,"abstract":"In Japanese judicial field, most precedents are not publicly opened on Japanese court web pages to protect personal information. Confidential words such as personal names are replaced by other meaningless words. This operation takes time and effort because it is done manually. Therefore, we would like to predict the confidential words automatically. We propose the method of predicting the confidential words in Japanese judicial precedents using the neural network combined POS (Part of speech) tag. As the result we obtained 88% accuracy improvement for detecting the confidential words compared to the previously model. Then, we confirmed whether our model could be practical use or not.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Japanese judicial field, most precedents are not publicly opened on Japanese court web pages to protect personal information. Confidential words such as personal names are replaced by other meaningless words. This operation takes time and effort because it is done manually. Therefore, we would like to predict the confidential words automatically. We propose the method of predicting the confidential words in Japanese judicial precedents using the neural network combined POS (Part of speech) tag. As the result we obtained 88% accuracy improvement for detecting the confidential words compared to the previously model. Then, we confirmed whether our model could be practical use or not.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络结合词性标注预测日本司法判例中的机密词
在日本司法领域,为了保护个人信息,日本法院的网页上大多不公开公开判例。个人姓名等机密词语被其他无意义的词语所取代。由于该操作是手动完成的,因此需要花费时间和精力。因此,我们希望自动预测机密词。本文提出了一种结合词性标签的神经网络预测日语司法判例中机密词的方法。结果表明,与之前的模型相比,我们在检测机密词方面的准确率提高了88%。然后,我们验证了我们的模型是否可以实际使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Long Short Term Memory Networks Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference Uncovering Los Angeles Tourists' Patterns Using Geospatial Analysis and Supervised Machine Learning with Random Forest Predictors A Framework for Leveraging Business Intelligence to Manage Transactional Data Flows between Private Healthcare Providers and Medical Aid Administrators Feasibility Study of a Consumer Multi-Sensory Wristband to Monitor Sleep Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1