{"title":"Stochastic Resource Optimization over Heterogeneous Graph Neural Networks for Failure-Predictive Maintenance Scheduling","authors":"Zheyuan Wang, M. Gombolay","doi":"10.1609/icaps.v32i1.19839","DOIUrl":null,"url":null,"abstract":"Resource optimization for predictive maintenance is a challenging computational problem that requires inferring and reasoning over stochastic failure models and dynamically allocating repair resources. Predictive maintenance scheduling is typically performed with a combination of ad hoc, hand-crafted heuristics with manual scheduling corrections by human domain experts, which is a labor-intensive process that is hard to scale. In this paper, we develop an innovative heterogeneous graph neural network to automatically learn an end-to-end resource scheduling policy. Our approach is fully graph-based with the addition of state summary and decision value nodes that provides a computationally lightweight and nonparametric means to perform dynamic scheduling. We augment our policy optimization procedure to enable robust learning in highly stochastic environments for which typical actor-critic reinforcement learning methods are ill-suited. In consultation with aerospace industry partners, we develop a virtual predictive-maintenance environment for a heterogeneous fleet of aircraft, called AirME. Our approach sets a new state-of-the-art by outperforming conventional, hand-crafted heuristics and baseline learning methods across problem sizes and various objective functions.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Resource optimization for predictive maintenance is a challenging computational problem that requires inferring and reasoning over stochastic failure models and dynamically allocating repair resources. Predictive maintenance scheduling is typically performed with a combination of ad hoc, hand-crafted heuristics with manual scheduling corrections by human domain experts, which is a labor-intensive process that is hard to scale. In this paper, we develop an innovative heterogeneous graph neural network to automatically learn an end-to-end resource scheduling policy. Our approach is fully graph-based with the addition of state summary and decision value nodes that provides a computationally lightweight and nonparametric means to perform dynamic scheduling. We augment our policy optimization procedure to enable robust learning in highly stochastic environments for which typical actor-critic reinforcement learning methods are ill-suited. In consultation with aerospace industry partners, we develop a virtual predictive-maintenance environment for a heterogeneous fleet of aircraft, called AirME. Our approach sets a new state-of-the-art by outperforming conventional, hand-crafted heuristics and baseline learning methods across problem sizes and various objective functions.