A Hybrid Consensus and Clustering Method for Protein Structure Selection

Qingguo Wang, Yingzi Shang, Dong Xu
{"title":"A Hybrid Consensus and Clustering Method for Protein Structure Selection","authors":"Qingguo Wang, Yingzi Shang, Dong Xu","doi":"10.1109/ICTAI.2011.10","DOIUrl":null,"url":null,"abstract":"In protein tertiary structure prediction, a crucial step is to select near-native structures from a large number of predicted structural models. Over the years, many methods have been proposed for the protein structure selection problem. Despite significant advances, the discerning power of current approaches is still unsatisfactory. In this paper, we propose a new algorithm, CC-Select, that combines consensus with clustering techniques. Given a set of predicted models, CC-Select first calculates a consensus score for each structure based on its average pair wise structural similarity to other models. Then, similar structures are grouped into clusters using multidimensional scaling and clustering algorithms. In each cluster, the one with the highest consensus score is selected as a candidate model. Using extensive benchmark sets of a large collection of predicted models, we compare CC-Select with existing state-of-the-art quality assessment methods and show significant improvement.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In protein tertiary structure prediction, a crucial step is to select near-native structures from a large number of predicted structural models. Over the years, many methods have been proposed for the protein structure selection problem. Despite significant advances, the discerning power of current approaches is still unsatisfactory. In this paper, we propose a new algorithm, CC-Select, that combines consensus with clustering techniques. Given a set of predicted models, CC-Select first calculates a consensus score for each structure based on its average pair wise structural similarity to other models. Then, similar structures are grouped into clusters using multidimensional scaling and clustering algorithms. In each cluster, the one with the highest consensus score is selected as a candidate model. Using extensive benchmark sets of a large collection of predicted models, we compare CC-Select with existing state-of-the-art quality assessment methods and show significant improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质结构选择的混合共识和聚类方法
在蛋白质三级结构预测中,从大量的预测结构模型中选择近原生结构是关键的一步。多年来,人们提出了许多方法来解决蛋白质结构选择问题。尽管取得了重大进展,但目前方法的识别能力仍不能令人满意。在本文中,我们提出了一种新的算法,CC-Select,它结合了共识和聚类技术。给定一组预测模型,CC-Select首先根据其与其他模型的平均对结构相似性计算每个结构的共识分数。然后,使用多维尺度和聚类算法将相似的结构分组到聚类中。在每个聚类中,选择共识得分最高的一个作为候选模型。使用大量预测模型的广泛基准集,我们将CC-Select与现有的最先进的质量评估方法进行比较,并显示出显着的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1