{"title":"The Sub-exponential Upper Bound for On-Line Chain Partitioning","authors":"B. Bosek, Tomasz Krawczyk","doi":"10.1109/FOCS.2010.40","DOIUrl":null,"url":null,"abstract":"The main question in the on-line chain partitioning problem is to determine whether there exists an algorithm that partitions on-line posets of width at most $w$ into polynomial number of chains – see Trotter's chapter Partially ordered sets in the Handbook of Combinatorics. So far the best known on-line algorithm of Kier stead used at most $(5^w-1)/4$ chains, on the other hand Szemer\\'{e}di proved that any on-line algorithm requires at least $\\binom{w+1}{2}$ chains. These results were obtained in the early eighties and since then no progress in the general case has been done. We provide an on-line algorithm that partitions orders of width $w$ into at most $w^{16\\log{w}}$ chains. This yields the first sub-exponential upper bound for on-line chain partitioning problem.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2010.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
The main question in the on-line chain partitioning problem is to determine whether there exists an algorithm that partitions on-line posets of width at most $w$ into polynomial number of chains – see Trotter's chapter Partially ordered sets in the Handbook of Combinatorics. So far the best known on-line algorithm of Kier stead used at most $(5^w-1)/4$ chains, on the other hand Szemer\'{e}di proved that any on-line algorithm requires at least $\binom{w+1}{2}$ chains. These results were obtained in the early eighties and since then no progress in the general case has been done. We provide an on-line algorithm that partitions orders of width $w$ into at most $w^{16\log{w}}$ chains. This yields the first sub-exponential upper bound for on-line chain partitioning problem.