Artificial neural networks for the classification of cardiac patient states using ECG and blood pressure data

M. P. Tjoa, D. Dutt, Y. Lim, B.W. Yau, R.C. Kugean, S. Krishnan, K. Chan
{"title":"Artificial neural networks for the classification of cardiac patient states using ECG and blood pressure data","authors":"M. P. Tjoa, D. Dutt, Y. Lim, B.W. Yau, R.C. Kugean, S. Krishnan, K. Chan","doi":"10.1109/ANZIIS.2001.974098","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to look into the feasibility of using ECG and blood pressure data into a neural network for the classification of cardiac patient states. Both Back Propagation (BP) and Radial Basis function (RBF) networks have been used and a comparison of the performance of the two neural networks has been made. Various parameters extracted from the multimodal data have been used as input to the neural network and the diagnosis is made by classifying the output into three categories viz, Normal, Abnormal and Premature Ventricular Contraction (PVC). A performance comparison of the two neural networks has shown that RBF gives slightly higher classification accuracy compared to BP. The success of the implementation on limited input data has indicated the feasibility of fusing multimodal input data using neural network for better classification of cardiac patient states in an ICU setting.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The aim of this paper is to look into the feasibility of using ECG and blood pressure data into a neural network for the classification of cardiac patient states. Both Back Propagation (BP) and Radial Basis function (RBF) networks have been used and a comparison of the performance of the two neural networks has been made. Various parameters extracted from the multimodal data have been used as input to the neural network and the diagnosis is made by classifying the output into three categories viz, Normal, Abnormal and Premature Ventricular Contraction (PVC). A performance comparison of the two neural networks has shown that RBF gives slightly higher classification accuracy compared to BP. The success of the implementation on limited input data has indicated the feasibility of fusing multimodal input data using neural network for better classification of cardiac patient states in an ICU setting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用心电图和血压数据进行心脏病人状态分类的人工神经网络
本文的目的是探讨将心电图和血压数据纳入神经网络用于心脏病患者状态分类的可行性。采用了反向传播(BP)和径向基函数(RBF)两种神经网络,并对两种神经网络的性能进行了比较。从多模态数据中提取各种参数作为神经网络的输入,并将输出分为正常、异常和室性早搏(PVC)三类进行诊断。两种神经网络的性能比较表明,RBF的分类准确率略高于BP。在有限输入数据上实现的成功表明,使用神经网络融合多模态输入数据以更好地分类ICU环境中的心脏病患者状态的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mammogram JPEG quantisation matrix optimisation for PACS Static image simulation of electronic visual prostheses Ultrasound mediated transfection of HT29 colorectal cancer cells in vitro: preliminary results Gait symmetry quantification during treadmill walking Segmentation of clinical structures for radiotherapy treatment planning: a comparison of two morphological approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1