High-coverage analog IP block test generation methodology using low-cost signal generation and output response analysis

Jhon Gomez, Nektar Xama, Anthony Coyette, Ronny Vanhooren, Wim Dobbelaere, G. Gielen
{"title":"High-coverage analog IP block test generation methodology using low-cost signal generation and output response analysis","authors":"Jhon Gomez, Nektar Xama, Anthony Coyette, Ronny Vanhooren, Wim Dobbelaere, G. Gielen","doi":"10.1109/ETS56758.2023.10173963","DOIUrl":null,"url":null,"abstract":"Today, testing of AMS circuits needs to improve quality towards ppb test escape levels as well as decrease the test development time to reduce the IC lead time. A defect-oriented solution can improve quality by focusing on structural tests that can detect defects more efficiently than traditional functional tests, while test reuse can decrease test development time on ICs built with reusable IP blocks. A defect-oriented built-in self-test (BIST) approach integrates both solutions. This paper proposes a test development methodology for analog IP blocks based on such defect-oriented BIST framework. The methodology allows for achieving the target defect coverage at the lowest possible cost. Co-designing the IP with the DfT structures allows accounting for any non-idealities that the DfT may add to the IP. Test structures cost is limited by using low-cost signal generation and a new output response analyzer (ORA). The proposed methodology is demonstrated on two case studies. The results show that coverages higher than 90% are possible using a simple digital pulse signal and an ORA with only 4 bits of accuracy, while coverages higher than 95% are possible with 6 bits, offering a good trade-off between coverage and cost.","PeriodicalId":211522,"journal":{"name":"2023 IEEE European Test Symposium (ETS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS56758.2023.10173963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Today, testing of AMS circuits needs to improve quality towards ppb test escape levels as well as decrease the test development time to reduce the IC lead time. A defect-oriented solution can improve quality by focusing on structural tests that can detect defects more efficiently than traditional functional tests, while test reuse can decrease test development time on ICs built with reusable IP blocks. A defect-oriented built-in self-test (BIST) approach integrates both solutions. This paper proposes a test development methodology for analog IP blocks based on such defect-oriented BIST framework. The methodology allows for achieving the target defect coverage at the lowest possible cost. Co-designing the IP with the DfT structures allows accounting for any non-idealities that the DfT may add to the IP. Test structures cost is limited by using low-cost signal generation and a new output response analyzer (ORA). The proposed methodology is demonstrated on two case studies. The results show that coverages higher than 90% are possible using a simple digital pulse signal and an ORA with only 4 bits of accuracy, while coverages higher than 95% are possible with 6 bits, offering a good trade-off between coverage and cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用低成本信号生成和输出响应分析的高覆盖模拟IP块测试生成方法
今天,AMS电路的测试需要提高质量,达到ppb测试逃逸水平,并减少测试开发时间,以减少IC的交货时间。面向缺陷的解决方案可以通过关注比传统功能测试更有效地检测缺陷的结构测试来提高质量,而测试重用可以减少使用可重用IP块构建的ic的测试开发时间。面向缺陷的内置自检(BIST)方法集成了这两种解决方案。本文提出了一种基于这种缺陷导向的BIST框架的模拟IP模块测试开发方法。该方法允许以尽可能低的成本实现目标缺陷覆盖。与DfT结构共同设计IP允许考虑DfT可能添加到IP中的任何非理想性。使用低成本的信号产生和新的输出响应分析仪(ORA)限制了测试结构的成本。提出的方法在两个案例研究中得到证明。结果表明,使用简单的数字脉冲信号和只有4位精度的ORA,覆盖率可能高于90%,而6位的覆盖率可能高于95%,在覆盖率和成本之间提供了很好的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Counterfeit Detection by Semiconductor Process Technology Inspection Semi-Supervised Deep Learning for Microcontroller Performance Screening FINaL: Driving High-Level Fault Injection Campaigns with Natural Language Learn to Tune: Robust Performance Tuning in Post-Silicon Validation A Resilience Framework for Synapse Weight Errors and Firing Threshold Perturbations in RRAM Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1