Lattice-Reduction-Aided Symbol-Wise Intra-Iterative Interference Cancellation Detector for Massive MIMO System

Hsiao-Yu Yeh, Yuan-Hao Huang
{"title":"Lattice-Reduction-Aided Symbol-Wise Intra-Iterative Interference Cancellation Detector for Massive MIMO System","authors":"Hsiao-Yu Yeh, Yuan-Hao Huang","doi":"10.1109/SiPS47522.2019.9020430","DOIUrl":null,"url":null,"abstract":"Massive multiple-input multiple-output (MIMO) system plays an important role of increasing spectral efficiency in the fifth-generation (5G) cellular communication. The MIMO detection complexity increases significantly along with the number of antennas. Thus, the design of high-performance low-complexity detector for massive MIMO is a challenging design issue for the 5G system. This paper proposes a lattice-reduction-aided (LRA) symbol-wise (SW) detection technique to enhance the performance of the intra-iterative interference cancellation (IIC) detector based on Newton’s method. The proposed SW IIC detector has near minimum-mean-square-error performance with faster convergence speed and lower computational complexity than the original IIC detector. In a 64-QAM $128 \\times 8$ up-link MIMO system, the proposed LRA SW IIC detector reduces about 95.35% computational complexity of the original IIC detector under the same BER performance. Considering the preprocessing complexity of the LR in the time-varying channel, the proposed LRA SW IIC detector still has lower complexity when the coherent frame size is larger than 12 MIMO symbols.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Massive multiple-input multiple-output (MIMO) system plays an important role of increasing spectral efficiency in the fifth-generation (5G) cellular communication. The MIMO detection complexity increases significantly along with the number of antennas. Thus, the design of high-performance low-complexity detector for massive MIMO is a challenging design issue for the 5G system. This paper proposes a lattice-reduction-aided (LRA) symbol-wise (SW) detection technique to enhance the performance of the intra-iterative interference cancellation (IIC) detector based on Newton’s method. The proposed SW IIC detector has near minimum-mean-square-error performance with faster convergence speed and lower computational complexity than the original IIC detector. In a 64-QAM $128 \times 8$ up-link MIMO system, the proposed LRA SW IIC detector reduces about 95.35% computational complexity of the original IIC detector under the same BER performance. Considering the preprocessing complexity of the LR in the time-varying channel, the proposed LRA SW IIC detector still has lower complexity when the coherent frame size is larger than 12 MIMO symbols.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模MIMO系统的格约简辅助符号迭代内干扰消除检测器
大规模多输入多输出(MIMO)系统在第五代(5G)蜂窝通信中发挥着提高频谱效率的重要作用。MIMO检测复杂度随着天线数量的增加而显著增加。因此,设计面向大规模MIMO的高性能低复杂度检测器是5G系统的一个具有挑战性的设计问题。为了提高迭代内干扰消除检测器的性能,提出了一种基于牛顿法的格约简辅助符号检测技术。该方法具有接近最小均方误差的性能,收敛速度快,计算复杂度低。在64-QAM $128 × 8$上行链路MIMO系统中,在相同误码率下,所提出的LRA SW IIC检测器的计算复杂度比原IIC检测器降低了95.35%。考虑到时变信道中LR的预处理复杂度,当相干帧大小大于12个MIMO符号时,所提出的LRA SW IIC检测器仍然具有较低的复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Reduction through Experience Classification f or Deep Reinforcement Learning with Prioritized Experience Replay Learning to Design Constellation for AWGN Channel Using Auto-Encoders SIR Beam Selector for Amazon Echo Devices Audio Front-End AVX-512 Based Software Decoding for 5G LDPC Codes Pipelined Implementations for Belief Propagation Polar Decoder: From Formula to Hardware
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1