Probabilistic Gaze Imitation and Saliency Learning in a Robotic Head

A. P. Shon, David B. Grimes, Chris L. Baker, Matthew W. Hoffman, Shengli Zhou, Rajesh P. N. Rao
{"title":"Probabilistic Gaze Imitation and Saliency Learning in a Robotic Head","authors":"A. P. Shon, David B. Grimes, Chris L. Baker, Matthew W. Hoffman, Shengli Zhou, Rajesh P. N. Rao","doi":"10.1109/ROBOT.2005.1570548","DOIUrl":null,"url":null,"abstract":"Imitation is a powerful mechanism for transferring knowledge from an instructor to a naïve observer, one that is deeply contingent on a state of shared attention between these two agents. In this paper we present Bayesian algorithms that implement the core of an imitation learning framework. We use gaze imitation, coupled with task-dependent saliency learning, to build a state of shared attention between the instructor and observer. We demonstrate the performance of our algorithms in a gaze following and saliency learning task implemented on an active vision robotic head. Our results suggest that the ability to follow gaze and learn instructor-and task-specific saliency models could play a crucial role in building systems capable of complex forms of human-robot interaction.","PeriodicalId":350878,"journal":{"name":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2005.1570548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Imitation is a powerful mechanism for transferring knowledge from an instructor to a naïve observer, one that is deeply contingent on a state of shared attention between these two agents. In this paper we present Bayesian algorithms that implement the core of an imitation learning framework. We use gaze imitation, coupled with task-dependent saliency learning, to build a state of shared attention between the instructor and observer. We demonstrate the performance of our algorithms in a gaze following and saliency learning task implemented on an active vision robotic head. Our results suggest that the ability to follow gaze and learn instructor-and task-specific saliency models could play a crucial role in building systems capable of complex forms of human-robot interaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人头部的概率凝视模仿和显著性学习
模仿是一种将知识从指导者传递给naïve观察者的强大机制,这种机制在很大程度上取决于这两个主体之间共享注意力的状态。在本文中,我们提出了实现模仿学习框架核心的贝叶斯算法。我们使用凝视模仿,再加上任务依赖的显著性学习,在讲师和观察者之间建立一种共享注意力的状态。我们在一个主动视觉机器人头部的注视跟踪和显著性学习任务中展示了我们的算法的性能。我们的研究结果表明,跟随注视和学习特定于教师和任务的显著性模型的能力在构建能够进行复杂形式的人机交互的系统中发挥了至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Diagnosis and Fault Tolerant Control for Wheeled Mobile Robots under Unknown Environments: A Survey Clamping Tools of a Capsule for Monitoring the Gastrointestinal Tract Problem Analysis and Preliminary Technological Activity A Fixed– Camera Controller for Visual Guidance of Mobile Robots via Velocity Fields Insect-like Antennal Sensing for Climbing and Tunneling Behavior in a Biologically-inspired Mobile Robot Improving Grid-based SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1