An Age-Based Data Collection and Path Planning Algorithm in UAV-Assisted Wireless Sensor Networks

Chi Sun, De Wei
{"title":"An Age-Based Data Collection and Path Planning Algorithm in UAV-Assisted Wireless Sensor Networks","authors":"Chi Sun, De Wei","doi":"10.1145/3573942.3573981","DOIUrl":null,"url":null,"abstract":"In view of the importance of Age of Information (AoI) in delay sensitive applications of Wireless Sensor Networks (WSNs), an improved gray wolf algorithm (POPAGA) based on the combination of particle swarm optimization possibility fuzzy C-mean clustering is proposed. POPAGA is optimized from the clustering stage and the path planning stage. In the clustering stage, the particle swarm optimization algorithm is first used to optimize the possibility fuzzy hybrid clustering algorithm, which not only overcomes the problem that the fuzzy C-means is sensitive to the initial clustering center, but also avoids the poor initialization effect of the possibility fuzzy c-means clustering, so as to determine the Hovering Collection Data points (HCD) and their associated Sensor Nodes (SNs). In the path planning stage, based on the hover collection data points obtained in the previous stage, the improved gray wolf optimization algorithm (GWO) is used to find the optimal path to minimize the maximum AoI and the average AoI. The simulation results show that POPAGA can obtain the global minimum AoI optimal value, whether compared with the traditional genetic algorithm (GA) and simulated annealing algorithm (SA) for solving TSP problem, or compared with the genetic algorithm (GA) and greedy algorithm based on AoI.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3573981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In view of the importance of Age of Information (AoI) in delay sensitive applications of Wireless Sensor Networks (WSNs), an improved gray wolf algorithm (POPAGA) based on the combination of particle swarm optimization possibility fuzzy C-mean clustering is proposed. POPAGA is optimized from the clustering stage and the path planning stage. In the clustering stage, the particle swarm optimization algorithm is first used to optimize the possibility fuzzy hybrid clustering algorithm, which not only overcomes the problem that the fuzzy C-means is sensitive to the initial clustering center, but also avoids the poor initialization effect of the possibility fuzzy c-means clustering, so as to determine the Hovering Collection Data points (HCD) and their associated Sensor Nodes (SNs). In the path planning stage, based on the hover collection data points obtained in the previous stage, the improved gray wolf optimization algorithm (GWO) is used to find the optimal path to minimize the maximum AoI and the average AoI. The simulation results show that POPAGA can obtain the global minimum AoI optimal value, whether compared with the traditional genetic algorithm (GA) and simulated annealing algorithm (SA) for solving TSP problem, or compared with the genetic algorithm (GA) and greedy algorithm based on AoI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人机辅助无线传感器网络中基于年龄的数据采集与路径规划算法
针对信息时代(AoI)在无线传感器网络延迟敏感应用中的重要性,提出了一种基于粒子群优化可能性模糊c均值聚类的改进灰狼算法(POPAGA)。从聚类阶段和路径规划阶段对POPAGA进行优化。在聚类阶段,首先利用粒子群优化算法对可能性模糊混合聚类算法进行优化,既克服了模糊c均值对初始聚类中心敏感的问题,又避免了可能性模糊c均值聚类初始化效果较差的问题,从而确定悬停收集数据点(HCD)及其关联的传感器节点(SNs)。在路径规划阶段,基于前一阶段获得的悬停采集数据点,采用改进的灰狼优化算法(GWO)寻找最大AoI和平均AoI最小的最优路径。仿真结果表明,无论是与求解TSP问题的传统遗传算法(GA)和模拟退火算法(SA)相比,还是与基于AoI的遗传算法(GA)和贪心算法相比,POPAGA都能获得全局最小的AoI最优值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Lightweight Method for Object Detection Incremental Encoding Transformer Incorporating Common-sense Awareness for Conversational Sentiment Recognition Non-intrusive Automatic 3D Gaze Ground-truth System Fiber Optic Gyroscope Random Error Modeling Based on Improved Kalman Filtering Channel Modeling of Spaceborne Multiwavelet Packet OFDM System Based on CWGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1