Modeling and identification of human musculoskeletal walking system

L.-Q. Zhang, R. Shiavi, M. Wilkes
{"title":"Modeling and identification of human musculoskeletal walking system","authors":"L.-Q. Zhang, R. Shiavi, M. Wilkes","doi":"10.1109/SSST.1990.138128","DOIUrl":null,"url":null,"abstract":"Several methods are tested to identify the human musculoskeletal system both as a linear and nonlinear system. For the linear system approach, a MIMO (multiinput, multioutput) ARX (autoregressive with exogeneous inputs) model is first tested to get a rough estimation of the system structure and parameters. A general linear input-output MIMO model is then developed, and parameters are estimated by means of the prediction error identification method. Since the complex human musculoskeletal system is almost certainly a nonlinear system, nonlinear system identification is applied and polynomials are used to approximate the nonlinear system functions. For such a MIMO nonlinear system, the parameters to be estimated will number in the thousands or even millions, depending on the polynomial degrees used and the maximum orders of delays. To overcome such numerical difficulties, a forward-regression orthogonal method is used to select only the most significant terms and estimate the corresponding parameters.<<ETX>>","PeriodicalId":201543,"journal":{"name":"[1990] Proceedings. The Twenty-Second Southeastern Symposium on System Theory","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990] Proceedings. The Twenty-Second Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1990.138128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Several methods are tested to identify the human musculoskeletal system both as a linear and nonlinear system. For the linear system approach, a MIMO (multiinput, multioutput) ARX (autoregressive with exogeneous inputs) model is first tested to get a rough estimation of the system structure and parameters. A general linear input-output MIMO model is then developed, and parameters are estimated by means of the prediction error identification method. Since the complex human musculoskeletal system is almost certainly a nonlinear system, nonlinear system identification is applied and polynomials are used to approximate the nonlinear system functions. For such a MIMO nonlinear system, the parameters to be estimated will number in the thousands or even millions, depending on the polynomial degrees used and the maximum orders of delays. To overcome such numerical difficulties, a forward-regression orthogonal method is used to select only the most significant terms and estimate the corresponding parameters.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人体肌肉骨骼行走系统建模与辨识
几种方法被测试来识别人类肌肉骨骼系统作为一个线性和非线性系统。对于线性系统方法,首先测试MIMO(多输入,多输出)ARX(具有外源输入的自回归)模型,以获得系统结构和参数的粗略估计。然后建立了一般的线性输入输出MIMO模型,并采用预测误差辨识方法对参数进行估计。由于复杂的人体肌肉骨骼系统几乎肯定是一个非线性系统,因此应用非线性系统辨识并使用多项式来近似非线性系统函数。对于这样的MIMO非线性系统,要估计的参数将在数千甚至数百万,这取决于所使用的多项式度和延迟的最大阶数。为了克服这种数值上的困难,采用了一种前向回归正交法来选择最重要的项并估计相应的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using singular values for model reduction of flexible structures Synthesis of series/parallel RLC one-port networks Fault tolerant motor drives for powered wheelchairs A scheduling scheme for communicating tasks Computer simulation and experimental verification of a metal forming process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1