Robust multichannel detection in heterogeneous airborne radar disturbance

J. Michels, M. Rangaswamy, B. Himed
{"title":"Robust multichannel detection in heterogeneous airborne radar disturbance","authors":"J. Michels, M. Rangaswamy, B. Himed","doi":"10.1109/NRC.2002.999733","DOIUrl":null,"url":null,"abstract":"This paper presents the performance of several multichannel adaptive processing detection methods, including a model-based approach which exhibits robustness in correlated disturbances ranging from Gaussian to K-distributed with high tailed probability density functions modeled as compound-Gaussian clutter. Specifically, we consider detection in dense signal environments where training data contains multiple discrete signals in the spatial-temporal domain. For this problem, we compare methods featuring robustness to such processes with the recently proposed non-homogeneity detection (NHD) method, a preprocessing approach for training data selection prior to detection algorithm implementation. Issues considered here include robust detection with respect to clutter texture power variations and multiple signal environments, constant false alarm rate (CFAR) performance and efficient estimation with limited training data.","PeriodicalId":448055,"journal":{"name":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 IEEE Radar Conference (IEEE Cat. No.02CH37322)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2002.999733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper presents the performance of several multichannel adaptive processing detection methods, including a model-based approach which exhibits robustness in correlated disturbances ranging from Gaussian to K-distributed with high tailed probability density functions modeled as compound-Gaussian clutter. Specifically, we consider detection in dense signal environments where training data contains multiple discrete signals in the spatial-temporal domain. For this problem, we compare methods featuring robustness to such processes with the recently proposed non-homogeneity detection (NHD) method, a preprocessing approach for training data selection prior to detection algorithm implementation. Issues considered here include robust detection with respect to clutter texture power variations and multiple signal environments, constant false alarm rate (CFAR) performance and efficient estimation with limited training data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机载非均质雷达干扰下的鲁棒多通道检测
本文介绍了几种多通道自适应处理检测方法的性能,包括一种基于模型的方法,该方法在高斯到k分布的相关干扰中具有鲁棒性,该方法具有高尾概率密度函数,建模为复合高斯杂波。具体来说,我们考虑在密集信号环境下的检测,其中训练数据在时空域中包含多个离散信号。针对这个问题,我们将对这些过程具有鲁棒性的方法与最近提出的非同质性检测(NHD)方法进行了比较,NHD方法是一种在检测算法实现之前进行训练数据选择的预处理方法。这里考虑的问题包括对杂波纹理功率变化和多信号环境的鲁棒检测,恒定虚警率(CFAR)性能以及有限训练数据下的有效估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acceleration compensation by matched filtering Model-based adaptive detection and DOA estimation using separated sub-arrays Theoretical analysis of small sample size behaviour of eigenvector projection technique applied to STAP Sparse mutual coupling matrix and sensor gain/phase estimation for array auto-calibration A new constrained joint-domain localized approach for airborne radars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1