Encrypted Fast Covariance Intersection Without Leaking Fusion Weights

Marko Ristic, B. Noack
{"title":"Encrypted Fast Covariance Intersection Without Leaking Fusion Weights","authors":"Marko Ristic, B. Noack","doi":"10.1109/MFI55806.2022.9913840","DOIUrl":null,"url":null,"abstract":"State estimate fusion is a common requirement in distributed sensor networks and can be complicated by untrusted participants or network eavesdroppers. We present a method for computing the common Fast Covariance Intersection fusion algorithm on an untrusted cloud without disclosing individual estimates or the fused result. In an existing solution to this problem, fusion weights corresponding to estimate errors are leaked to the cloud to perform the fusion. In this work, we present a method that guarantees no data identifying estimators or their estimated values is leaked to the cloud by requiring an additional computation step by the party querying the cloud for the fused result. The Paillier encryption scheme is used to homomorphically compute separate parts of the computation that can be combined after decryption. This encrypted Fast Covariance Intersection algorithm can be used in scenarios where the fusing cloud is not trusted and any information on estimator performances must remain confidential.","PeriodicalId":344737,"journal":{"name":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI55806.2022.9913840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

State estimate fusion is a common requirement in distributed sensor networks and can be complicated by untrusted participants or network eavesdroppers. We present a method for computing the common Fast Covariance Intersection fusion algorithm on an untrusted cloud without disclosing individual estimates or the fused result. In an existing solution to this problem, fusion weights corresponding to estimate errors are leaked to the cloud to perform the fusion. In this work, we present a method that guarantees no data identifying estimators or their estimated values is leaked to the cloud by requiring an additional computation step by the party querying the cloud for the fused result. The Paillier encryption scheme is used to homomorphically compute separate parts of the computation that can be combined after decryption. This encrypted Fast Covariance Intersection algorithm can be used in scenarios where the fusing cloud is not trusted and any information on estimator performances must remain confidential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不泄漏融合权值的加密快速协方差相交
状态估计融合是分布式传感器网络中的一种常见需求,但不可信参与者或网络窃听者可能会使其复杂化。提出了一种在不可信云上不泄露个体估计和融合结果的快速协方差交叉融合算法的计算方法。在该问题的现有解决方案中,将与估计误差相对应的融合权重泄露给云来执行融合。在这项工作中,我们提出了一种方法,通过要求向云查询融合结果的一方进行额外的计算步骤,保证没有识别估计器或其估计值的数据泄露到云中。Paillier加密方案用于同态计算可在解密后组合的计算的独立部分。这种加密的快速协方差相交算法可用于融合云不可信且任何关于估计器性能的信息必须保密的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regression with Ensemble of RANSAC in Camera-LiDAR Fusion for Road Boundary Detection and Modeling Global-local Feature Aggregation for Event-based Object Detection on EventKITTI Predicting Autonomous Vehicle Navigation Parameters via Image and Image-and-Point Cloud Fusion-based End-to-End Methods Perception-aware Receding Horizon Path Planning for UAVs with LiDAR-based SLAM PIPO: Policy Optimization with Permutation-Invariant Constraint for Distributed Multi-Robot Navigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1