MRC image recognition based on neural network

L. Wenjuan, Cheng Huaiying, Wang Yuzhi, Fu Min
{"title":"MRC image recognition based on neural network","authors":"L. Wenjuan, Cheng Huaiying, Wang Yuzhi, Fu Min","doi":"10.1109/MIC.2013.6758137","DOIUrl":null,"url":null,"abstract":"Traditional image during MRC measurement needs eyes to judge, which exists the subjective error. This paper describes theoretical framework, design and testing process of objective measurement MRC. By using BP neural network model, MRC image can be recognized automatically and reduces subjective error. The experimental results show that three layers BP neural networks can effectively identify the image by choosing appropriate characteristic value.","PeriodicalId":404630,"journal":{"name":"Proceedings of 2013 2nd International Conference on Measurement, Information and Control","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2013 2nd International Conference on Measurement, Information and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIC.2013.6758137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional image during MRC measurement needs eyes to judge, which exists the subjective error. This paper describes theoretical framework, design and testing process of objective measurement MRC. By using BP neural network model, MRC image can be recognized automatically and reduces subjective error. The experimental results show that three layers BP neural networks can effectively identify the image by choosing appropriate characteristic value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的MRC图像识别
传统的MRC测量图像需要人眼判断,存在主观误差。本文介绍了客观测量MRC的理论框架、设计和测试过程。利用BP神经网络模型实现MRC图像的自动识别,减少了主观误差。实验结果表明,通过选择合适的特征值,三层BP神经网络可以有效地识别图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of different types of partial discharge based on acoustic emission techniques Economy analysis of extended range electric vehicle in different control strategies An adaptive edge detection algorithm based on gray-scale morphology Internal sorting algorithm for large-scale data based on GPU-assisted Desingn of the heating by planar electromagnetic induction in the power supply
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1