On Building Detection Using the Class Activation Map: Case Study on a Landsat8 Image

P. Charuchinda, T. Kasetkasem, I. Kumazawa, T. Chanwimaluang
{"title":"On Building Detection Using the Class Activation Map: Case Study on a Landsat8 Image","authors":"P. Charuchinda, T. Kasetkasem, I. Kumazawa, T. Chanwimaluang","doi":"10.1109/ICTEMSYS.2019.8695964","DOIUrl":null,"url":null,"abstract":"Traditionally, the land cover mapping process needs a ground data to be collected with high precision in both class labeling and spatial locations. To collect enough, high precise ground data require resources. As a result, we proposed an approach for building an image classification based on the class activation map (CAM) where the goal is not to identify the relationship between each pixel and a class label, but to identify whether each sub-images contain the class of interest or not. The output of the class activation map is the filter responds where pixels with high respond are likely to belong to the class of interest. We examined the performance on a LAND-SAT 8 and found. The result of CAM showed that the proposed method achieves high accuracy in identifying whether a sub-image contains the class of interest or not. However, the precision in localizing the class is relatively moderate.","PeriodicalId":220516,"journal":{"name":"2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTEMSYS.2019.8695964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Traditionally, the land cover mapping process needs a ground data to be collected with high precision in both class labeling and spatial locations. To collect enough, high precise ground data require resources. As a result, we proposed an approach for building an image classification based on the class activation map (CAM) where the goal is not to identify the relationship between each pixel and a class label, but to identify whether each sub-images contain the class of interest or not. The output of the class activation map is the filter responds where pixels with high respond are likely to belong to the class of interest. We examined the performance on a LAND-SAT 8 and found. The result of CAM showed that the proposed method achieves high accuracy in identifying whether a sub-image contains the class of interest or not. However, the precision in localizing the class is relatively moderate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于类激活图的建筑物检测研究——以Landsat8图像为例
传统的土地覆盖制图过程需要在类别标注和空间定位上采集高精度的地面数据。为了收集足够的、高精度的地面数据,需要资源。因此,我们提出了一种基于类激活图(class activation map, CAM)构建图像分类的方法,其目标不是识别每个像素与类标签之间的关系,而是识别每个子图像是否包含感兴趣的类。类激活映射的输出是过滤器响应,其中具有高响应的像素可能属于感兴趣的类。我们检查了LAND-SAT 8的性能,发现。CAM结果表明,该方法在识别子图像是否包含感兴趣的类方面具有较高的准确性。但是,类本地化的精度相对适中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Indoor Room Identify and Mapping with Virtual based SLAM using Furnitures and Household Objects Relationship based on CNNs Multi Q-Table Q-Learning On Building Detection Using the Class Activation Map: Case Study on a Landsat8 Image ROS-Based Mobile Robot Pose Planning for a Good View of an Onboard Camera using Costmap Food categories classification and Ingredients estimation using CNNs on Raspberry Pi 3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1