{"title":"A Dislocation-Crystal Plasticity Simulation on FCC Single Crystal Considering Geometrically Necessary Dislocation Density and Incompatibility","authors":"Y. Aoyagi, K. Shizawa","doi":"10.1299/JCST.2.197","DOIUrl":null,"url":null,"abstract":"In the previous paper, the geometrically necessary (GN) incompatibility is newly defined and a new annihilation term of dislocation pairs due to the dynamic recovery is introduced into an expression of dislocation density. Furthermore, a multiscale model of crystal plasticity is proposed by considering the GN dislocation density and incompatibility. However, details of dislocation-crystal plasticity calculation are not given. In this paper, we explain a method of dislocation-crystal plasticity analysis. A finite element simulation is carried out for an f.c.c. single crystal under plane strain tension. It is numerically predicted that micro shear bands are formed at large strain, and sub-GNBs: small angle tilt boundaries are induced along these bands. Furthermore, the annihilation of dislocation pairs and the increase of dislocation mean free path characterizing stage III of work-hardening are computationally predicted.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.2.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the previous paper, the geometrically necessary (GN) incompatibility is newly defined and a new annihilation term of dislocation pairs due to the dynamic recovery is introduced into an expression of dislocation density. Furthermore, a multiscale model of crystal plasticity is proposed by considering the GN dislocation density and incompatibility. However, details of dislocation-crystal plasticity calculation are not given. In this paper, we explain a method of dislocation-crystal plasticity analysis. A finite element simulation is carried out for an f.c.c. single crystal under plane strain tension. It is numerically predicted that micro shear bands are formed at large strain, and sub-GNBs: small angle tilt boundaries are induced along these bands. Furthermore, the annihilation of dislocation pairs and the increase of dislocation mean free path characterizing stage III of work-hardening are computationally predicted.