Study on Sub Topic Clustering of Multi-Documents Based on Semi-Supervised Learning

Xiaodan Xu
{"title":"Study on Sub Topic Clustering of Multi-Documents Based on Semi-Supervised Learning","authors":"Xiaodan Xu","doi":"10.1109/DBTA.2010.5659111","DOIUrl":null,"url":null,"abstract":"Sub-topic detecting is an important step in the abstracting of multi-documents.This paper describes a new method for sub-topic detecting based on semi-supervised learning:it firstly gets the primal sets of topics by hierarchy clustering,and labels the sentences which have high scores in the topics,then use the method of constrained-kMeans to decide the number of topics(k),and finally get the topic sets by k-Means clustering.The experiment result indicates that its value is stable.","PeriodicalId":320509,"journal":{"name":"2010 2nd International Workshop on Database Technology and Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Database Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DBTA.2010.5659111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sub-topic detecting is an important step in the abstracting of multi-documents.This paper describes a new method for sub-topic detecting based on semi-supervised learning:it firstly gets the primal sets of topics by hierarchy clustering,and labels the sentences which have high scores in the topics,then use the method of constrained-kMeans to decide the number of topics(k),and finally get the topic sets by k-Means clustering.The experiment result indicates that its value is stable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于半监督学习的多文档子主题聚类研究
子主题检测是多文档摘要的重要步骤。本文提出了一种基于半监督学习的子主题检测新方法:首先通过层次聚类得到主题的原始集,对主题中得分高的句子进行标注,然后使用约束k- means方法确定主题的个数k,最后通过k- means聚类得到主题集。实验结果表明,其值是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SRJA: Iceberg Join Processing in Wireless Sensor Networks A New Method of Selecting Pivot Features for Structural Correspondence Learning in Domain Adaptive Sentiment Analysis Apply of Data Ming Technology in CRM A New Like Fibonacci Sequence and Its Properties Multisensor Estimation Fusion for Wireless Networks with Mixed Data Delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1