Predictive Control Based on Support Vector Machine Model

J. Wang, Shuyi Sun
{"title":"Predictive Control Based on Support Vector Machine Model","authors":"J. Wang, Shuyi Sun","doi":"10.1109/WCICA.2006.1712639","DOIUrl":null,"url":null,"abstract":"To the nonlinear controlled objects that generally exist in industrial processes, a predictive control algorithm based on support vector machine (SVM) model was proposed. First, SVM model with RBF kernel function was constructed offline. Then, the future values of controlled variable were predicted and linearized online using the SVM model. Finally, generalized predictive control (GPC) was applied to realize control goal. The simulation proves that this method is effective","PeriodicalId":375135,"journal":{"name":"2006 6th World Congress on Intelligent Control and Automation","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 6th World Congress on Intelligent Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCICA.2006.1712639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

To the nonlinear controlled objects that generally exist in industrial processes, a predictive control algorithm based on support vector machine (SVM) model was proposed. First, SVM model with RBF kernel function was constructed offline. Then, the future values of controlled variable were predicted and linearized online using the SVM model. Finally, generalized predictive control (GPC) was applied to realize control goal. The simulation proves that this method is effective
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机模型的预测控制
针对工业过程中普遍存在的非线性被控对象,提出了一种基于支持向量机模型的预测控制算法。首先,离线构建具有RBF核函数的SVM模型;然后,利用支持向量机模型对控制变量的未来值进行在线预测和线性化。最后,应用广义预测控制(GPC)实现控制目标。仿真结果证明了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decentralized Robust H∞Output Feedback Control for Value Bounded Uncertain Large-scale Interconnected Systems Predictions of System Marginal Price of Electricity Using Recurrent Neural Network Data Association Method Based on Fractal Theory Periodicity Locomotion Control Based on Central Pattern Generator An Improved Fuzzy Fault Diagnosis Method for Complex System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1