Clifford convolution and pattern matching on vector fields

J. Ebling, G. Scheuermann
{"title":"Clifford convolution and pattern matching on vector fields","authors":"J. Ebling, G. Scheuermann","doi":"10.1109/VISUAL.2003.1250372","DOIUrl":null,"url":null,"abstract":"The goal of this paper is to define a convolution operation which transfers image processing and pattern matching to vector fields from flow visualization. For this, a multiplication of vectors is necessary. Clifford algebra provides such a multiplication of vectors. We define a Clifford convolution on vector fields with uniform grids. The Clifford convolution works with multivector filter masks. Scalar and vector masks can be easily converted to multivector fields. So, filter masks from image processing on scalar fields can be applied as well as vector and scalar masks. Furthermore, a method for pattern matching with Clifford convolution on vector fields is described. The method is independent of the direction of the structures. This provides an automatic approach to feature detection. The features can be visualized using any known method like glyphs, isosurfaces or streamlines. The features are defined by filter masks instead of analytical properties and thus the approach is more intuitive.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90

Abstract

The goal of this paper is to define a convolution operation which transfers image processing and pattern matching to vector fields from flow visualization. For this, a multiplication of vectors is necessary. Clifford algebra provides such a multiplication of vectors. We define a Clifford convolution on vector fields with uniform grids. The Clifford convolution works with multivector filter masks. Scalar and vector masks can be easily converted to multivector fields. So, filter masks from image processing on scalar fields can be applied as well as vector and scalar masks. Furthermore, a method for pattern matching with Clifford convolution on vector fields is described. The method is independent of the direction of the structures. This provides an automatic approach to feature detection. The features can be visualized using any known method like glyphs, isosurfaces or streamlines. The features are defined by filter masks instead of analytical properties and thus the approach is more intuitive.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
向量场上的Clifford卷积和模式匹配
本文的目标是定义一个卷积运算,将图像处理和模式匹配从流可视化转移到向量场。为此,向量的乘法是必要的。克利福德代数提供了这样的向量乘法。在具有均匀网格的向量场上定义了Clifford卷积。Clifford卷积与多向量滤波器蒙版一起工作。标量和矢量掩码可以很容易地转换为多矢量字段。因此,从标量场的图像处理过滤器蒙版可以应用,以及矢量和标量蒙版。在此基础上,提出了一种基于Clifford卷积的向量场模式匹配方法。该方法与结构的方向无关。这提供了一种自动的特征检测方法。这些特征可以使用任何已知的方法,如字形、等值面或流线来可视化。这些特征是由过滤器掩模定义的,而不是由分析性质定义的,因此这种方法更直观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voxels on fire [computer animation] Chameleon: an interactive texture-based rendering framework for visualizing three-dimensional vector fields Fast volume segmentation with simultaneous visualization using programmable graphics hardware Adaptive design of a global opacity transfer function for direct volume rendering of ultrasound data Visualization experiences and issues in deep space exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1