Improved Neyman-Pearson Network for MIMO Radar Moving Target Detection

Jing Yan, Wenjing Zhao, Minglu Jin
{"title":"Improved Neyman-Pearson Network for MIMO Radar Moving Target Detection","authors":"Jing Yan, Wenjing Zhao, Minglu Jin","doi":"10.1109/ICTC55196.2022.9952367","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the moving target detection problem for distributed multiple-input multiple-output (MIMO) radar in compound-Gaussian clutter environment. By introducing a binary discrete variable, the problem of target detection is transformed into the estimation problem of discrete variable, and on the basis of Neyman-Pearson network (NPnet), an Improved Neyman-Pearson network (INPnet) is constructed to solve this problem. The INPnet modifies the nonlinear activation function of the output layer and loss function of the original network, and inherits the advantage of the original network combining data-driven and model-driven. In the network training stage, a training method considering the decision threshold is proposed, which achieves controllable false alarm rate. The simulation results show that the proposed detection method INPnet outperforms the existing NPnet, and can guarantee a constant false alarm rate (CFAR).","PeriodicalId":441404,"journal":{"name":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC55196.2022.9952367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the moving target detection problem for distributed multiple-input multiple-output (MIMO) radar in compound-Gaussian clutter environment. By introducing a binary discrete variable, the problem of target detection is transformed into the estimation problem of discrete variable, and on the basis of Neyman-Pearson network (NPnet), an Improved Neyman-Pearson network (INPnet) is constructed to solve this problem. The INPnet modifies the nonlinear activation function of the output layer and loss function of the original network, and inherits the advantage of the original network combining data-driven and model-driven. In the network training stage, a training method considering the decision threshold is proposed, which achieves controllable false alarm rate. The simulation results show that the proposed detection method INPnet outperforms the existing NPnet, and can guarantee a constant false alarm rate (CFAR).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进的Neyman-Pearson网络用于MIMO雷达运动目标检测
研究了分布多输入多输出(MIMO)雷达在复合高斯杂波环境下的运动目标检测问题。通过引入二值离散变量,将目标检测问题转化为离散变量的估计问题,并在Neyman-Pearson网络(NPnet)的基础上构造了改进的Neyman-Pearson网络(INPnet)来解决该问题。INPnet对原网络输出层的非线性激活函数和损失函数进行了修改,继承了原网络数据驱动和模型驱动相结合的优点。在网络训练阶段,提出了一种考虑决策阈值的训练方法,实现了虚警率可控。仿真结果表明,所提出的检测方法INPnet优于现有的NPnet,并能保证虚警率(CFAR)恒定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
6G Integrated Sensing and Communication: Recent Results and Future Directions Analysis of Use Cases Enabling AI/ML to IOT Service Platforms A Study on ECG Monitoring Embedded Systems Development of Touch Interface Using LIDAR for Multi-user Interactions in Projection-based VR Self-Conditional Crowd Activity Detection Network with Multi-label Classification Head
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1