New Influence Maximization Algorithm Research in Big Graph

Guigang Zhang, Sujie Li, Jian Wang, Ping Liu, Yibing Chen, Yunchuan Luo
{"title":"New Influence Maximization Algorithm Research in Big Graph","authors":"Guigang Zhang, Sujie Li, Jian Wang, Ping Liu, Yibing Chen, Yunchuan Luo","doi":"10.1109/WISA.2017.50","DOIUrl":null,"url":null,"abstract":"Influence maximization is a very hot research in social network. However, it is difficult to find a good algorithm to keep balance between the time complexity and computing result' accuracy. In order to solve this problem, in this paper, we propose two new algorithms. Firstly, we present a heuristic algorithm based on the greedy algorithm, which can reduce the time complexity a lot and it will have a good result, too. Then, we present another new algorithm. We use the k-means idea to solve the IM problem. We use the k-means idea to find s seed nodes. At the same time, we prove these two new algorithms.","PeriodicalId":204706,"journal":{"name":"2017 14th Web Information Systems and Applications Conference (WISA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th Web Information Systems and Applications Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2017.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Influence maximization is a very hot research in social network. However, it is difficult to find a good algorithm to keep balance between the time complexity and computing result' accuracy. In order to solve this problem, in this paper, we propose two new algorithms. Firstly, we present a heuristic algorithm based on the greedy algorithm, which can reduce the time complexity a lot and it will have a good result, too. Then, we present another new algorithm. We use the k-means idea to solve the IM problem. We use the k-means idea to find s seed nodes. At the same time, we prove these two new algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大图中新的影响最大化算法研究
影响力最大化是社交网络领域的一个研究热点。然而,很难找到一种好的算法来平衡时间复杂度和计算结果的准确性。为了解决这一问题,本文提出了两种新的算法。首先,在贪心算法的基础上提出了一种启发式算法,该算法大大降低了时间复杂度,并取得了良好的效果。然后,我们提出了另一种新的算法。我们使用k-均值的思想来解决IM问题。我们使用k-均值的思想来找到s个种子节点。同时,对这两种新算法进行了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Time Series Classification via Sparse Linear Combination Checking the Statutes in Chinese Judgment Document Based on Editing Distance Algorithm Information Extraction from Chinese Judgment Documents Topic Classification Based on Improved Word Embedding Keyword Extraction for Social Media Short Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1