Multi-level expression guided attention network for referring expression comprehension

Liang Peng, Yang Yang, Xing Xu, Jingjing Li, Xiaofeng Zhu
{"title":"Multi-level expression guided attention network for referring expression comprehension","authors":"Liang Peng, Yang Yang, Xing Xu, Jingjing Li, Xiaofeng Zhu","doi":"10.1145/3444685.3446270","DOIUrl":null,"url":null,"abstract":"Referring expression comprehension is a task of identifying a text-related object or region in a given image by a natural language expression. In this task, it is essential to understand the expression sentence in multi-aspect and adapt it to region representations for generating the discriminative information. Unfortunately, previous approaches usually focus on the important words or phrases in the expression using self-attention mechanisms, which causes that they may fail to distinguish the target region from others, especially the similar regions. To address this problem, we propose a novel model, termed Multi-level Expression Guided Attention network (MEGA-Net). It contains a multi-level visual attention schema guided by the expression representations in different levels, i.e., sentence-level, word-level and phrase-level, which allows generating the discriminative region features and helps to locate the related regions accurately. In addition, to distinguish the similar regions, we design a two-stage structure, where we first select top-K candidate regions according to their matching scores in the first stage, then we apply an object comparison attention mechanism to learn the difference between the candidates for matching the target region. We evaluate the proposed approach on three popular benchmark datasets and the experimental results demonstrate that our model performs against state-of-the-art methods.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Referring expression comprehension is a task of identifying a text-related object or region in a given image by a natural language expression. In this task, it is essential to understand the expression sentence in multi-aspect and adapt it to region representations for generating the discriminative information. Unfortunately, previous approaches usually focus on the important words or phrases in the expression using self-attention mechanisms, which causes that they may fail to distinguish the target region from others, especially the similar regions. To address this problem, we propose a novel model, termed Multi-level Expression Guided Attention network (MEGA-Net). It contains a multi-level visual attention schema guided by the expression representations in different levels, i.e., sentence-level, word-level and phrase-level, which allows generating the discriminative region features and helps to locate the related regions accurately. In addition, to distinguish the similar regions, we design a two-stage structure, where we first select top-K candidate regions according to their matching scores in the first stage, then we apply an object comparison attention mechanism to learn the difference between the candidates for matching the target region. We evaluate the proposed approach on three popular benchmark datasets and the experimental results demonstrate that our model performs against state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层次表达引导注意网络对表达理解的参考作用
引用表达式理解是指用自然语言表达式识别给定图像中与文本相关的对象或区域的任务。在此任务中,必须从多个方面理解表达句子并使其适应于区域表示,以生成判别信息。遗憾的是,以往的方法往往是利用自我注意机制将注意力集中在表达中的重要单词或短语上,导致无法将目标区域与其他区域区分开来,尤其是相似区域。为了解决这个问题,我们提出了一个新的模型,称为多层次表达引导注意网络(MEGA-Net)。它包含了一个多层次的视觉注意图式,以句子级、词级和短语级不同层次的表达表征为指导,可以生成判别区域特征,有助于准确定位相关区域。此外,为了区分相似区域,我们设计了一个两阶段结构,首先根据第一阶段的匹配分数选择top-K的候选区域,然后应用对象比较注意机制来学习候选区域之间的差异以匹配目标区域。我们在三个流行的基准数据集上评估了所提出的方法,实验结果表明,我们的模型优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storyboard relational model for group activity recognition Objective object segmentation visual quality evaluation based on pixel-level and region-level characteristics Multiplicative angular margin loss for text-based person search Distilling knowledge in causal inference for unbiased visual question answering A large-scale image retrieval system for everyday scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1