{"title":"A Preliminary Conceptualization and Analysis on Automated Static Analysis Tools for Vulnerability Detection in Android Apps","authors":"Giammaria Giordano, Fabio Palomba, F. Ferrucci","doi":"10.1109/SEAA56994.2022.00039","DOIUrl":null,"url":null,"abstract":"The availability of dependable mobile apps is a crucial need for over three billion people who use apps daily for any social and emergency connectivity. A key challenge for mobile developers concerns the detection of security-related issues. While a number of tools have been proposed over the years—especially for the ANDROID operating system—we point out a lack of empirical investigations on the actual support provided by these tools; these might guide developers in selecting the most appropriate instruments to improve their apps. In this paper, we propose a preliminary conceptualization of the vulnerabilities detected by three automated static analysis tools such as ANDROBUGS2, TRUESEEING, and INSIDER. We first derive a taxonomy of the issues detectable by the tools. Then, we run the tools against a dataset composed of 6,500 ANDROID apps to investigate their detection capabilities in terms of frequency of detection of vulnerabilities and complementarity among tools. Key findings of the study show that current tools identify similar concerns, but they use different naming conventions. Perhaps more importantly, the tools only partially cover the most common vulnerabilities classified by the Open Web Application Security Project (OWASP) Foundation.","PeriodicalId":269970,"journal":{"name":"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 48th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA56994.2022.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The availability of dependable mobile apps is a crucial need for over three billion people who use apps daily for any social and emergency connectivity. A key challenge for mobile developers concerns the detection of security-related issues. While a number of tools have been proposed over the years—especially for the ANDROID operating system—we point out a lack of empirical investigations on the actual support provided by these tools; these might guide developers in selecting the most appropriate instruments to improve their apps. In this paper, we propose a preliminary conceptualization of the vulnerabilities detected by three automated static analysis tools such as ANDROBUGS2, TRUESEEING, and INSIDER. We first derive a taxonomy of the issues detectable by the tools. Then, we run the tools against a dataset composed of 6,500 ANDROID apps to investigate their detection capabilities in terms of frequency of detection of vulnerabilities and complementarity among tools. Key findings of the study show that current tools identify similar concerns, but they use different naming conventions. Perhaps more importantly, the tools only partially cover the most common vulnerabilities classified by the Open Web Application Security Project (OWASP) Foundation.