Parameter Tuning Analysis for Phase Identification Algorithms in Distribution System Model Calibration

Bethany D. Peña, Logan Blakely, M. Reno
{"title":"Parameter Tuning Analysis for Phase Identification Algorithms in Distribution System Model Calibration","authors":"Bethany D. Peña, Logan Blakely, M. Reno","doi":"10.1109/kpec51835.2021.9446218","DOIUrl":null,"url":null,"abstract":"The recent growth of sensing devices on the distribution system, such as smart meter deployment, has enabled a wide variety of data-driven distribution system model calibration algorithms. A challenge associated with developing algorithms for model calibration tasks is the determination of parameters for a particular algorithm. This work proposes a method for parameter selection utilizing silhouette score analysis that allows these parameters to be tuned on a per-feeder basis. This method leverages cluster analysis and the distance matrices often produced by phase identification methods. The proposed method was tested on 5 feeders from 2 different utilities to select the number of clusters used in a spectral clustering phase identification algorithm. A synthetic dataset was then used to validate the method with the phase identification algorithm performing with 100% accuracy.","PeriodicalId":392538,"journal":{"name":"2021 IEEE Kansas Power and Energy Conference (KPEC)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Kansas Power and Energy Conference (KPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/kpec51835.2021.9446218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The recent growth of sensing devices on the distribution system, such as smart meter deployment, has enabled a wide variety of data-driven distribution system model calibration algorithms. A challenge associated with developing algorithms for model calibration tasks is the determination of parameters for a particular algorithm. This work proposes a method for parameter selection utilizing silhouette score analysis that allows these parameters to be tuned on a per-feeder basis. This method leverages cluster analysis and the distance matrices often produced by phase identification methods. The proposed method was tested on 5 feeders from 2 different utilities to select the number of clusters used in a spectral clustering phase identification algorithm. A synthetic dataset was then used to validate the method with the phase identification algorithm performing with 100% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
配电系统模型标定中相位识别算法的参数整定分析
最近在配电系统上的传感设备的增长,如智能电表的部署,使各种数据驱动的配电系统模型校准算法成为可能。与开发模型校准任务的算法相关的挑战是确定特定算法的参数。这项工作提出了一种利用轮廓评分分析进行参数选择的方法,该方法允许在每个馈线的基础上调整这些参数。该方法利用聚类分析和通常由相位识别方法产生的距离矩阵。该方法在2个不同电力公司的5个馈线上进行了测试,以选择光谱聚类相位识别算法中使用的聚类数量。然后使用合成数据集验证该方法,相位识别算法的准确率为100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proactive Scheduling of Hydrogen Systems for Resilience Enhancement of Distribution Networks Node Voltage Estimation of Distribution System Using Artificial Neural Network Considering Weather Data Dual-pole Line Start PM Motor With Variable Coil Number for Applications With Constant Load Torque Techno-Economic Assessment of Voltage Stability Improvement Using SSSC and STATCOM in a Wind-Dominated Power System Frequency Stability Analysis of the Sending Subsystem in an Interconnected Power System with HVDC Links
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1