Meta-learning with Hopfield Neural Network

Sambhavi Tiwari, Manas Gogoi, S. Verma, Krishna Pratap Singh
{"title":"Meta-learning with Hopfield Neural Network","authors":"Sambhavi Tiwari, Manas Gogoi, S. Verma, Krishna Pratap Singh","doi":"10.1109/UPCON56432.2022.9986399","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel meta-learning method that leverages the advantages of both meta-learning and storage. In meta-learning, the neural network tries to learn parameters distributed across multiple tasks. Meta-learning provides quick learning with unseen meta-testing tasks. In model-based meta-learning methods, an external memory module is used to retain a memory of important parameters from one task to the other, enabling meta-learning. The model proposed in this work consists of a long short-term memory(LSTM) neural network with an external memory network known as Hopfield neural network. Hopfield neural network is a single-layer, non-linear, auto-associative model that uses an external memory network. Unlike previous methods, our proposed model $LSTM_{HAM}$, i.e., long short term memory with Hopfield associative memory focuses on storing knowledge that uses an additional memory network to store and retrieve patterns using different location-based access mechanisms. Our model extends the capabilities of the LSTM and performs meta-learning best on 5-way 10-shot task setting with an average accuracy of approximately 60 percent.","PeriodicalId":185782,"journal":{"name":"2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 9th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPCON56432.2022.9986399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a novel meta-learning method that leverages the advantages of both meta-learning and storage. In meta-learning, the neural network tries to learn parameters distributed across multiple tasks. Meta-learning provides quick learning with unseen meta-testing tasks. In model-based meta-learning methods, an external memory module is used to retain a memory of important parameters from one task to the other, enabling meta-learning. The model proposed in this work consists of a long short-term memory(LSTM) neural network with an external memory network known as Hopfield neural network. Hopfield neural network is a single-layer, non-linear, auto-associative model that uses an external memory network. Unlike previous methods, our proposed model $LSTM_{HAM}$, i.e., long short term memory with Hopfield associative memory focuses on storing knowledge that uses an additional memory network to store and retrieve patterns using different location-based access mechanisms. Our model extends the capabilities of the LSTM and performs meta-learning best on 5-way 10-shot task setting with an average accuracy of approximately 60 percent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hopfield神经网络的元学习
在本文中,我们提出了一种新的元学习方法,它利用了元学习和存储的优点。在元学习中,神经网络试图学习分布在多个任务中的参数。元学习提供了快速学习和不可见的元测试任务。在基于模型的元学习方法中,使用外部记忆模块来保留从一个任务到另一个任务的重要参数的记忆,从而实现元学习。该模型由一个长短期记忆(LSTM)神经网络和一个称为Hopfield神经网络的外部记忆网络组成。Hopfield神经网络是使用外部记忆网络的单层、非线性、自关联模型。与以前的方法不同,我们提出的模型$LSTM_{HAM}$,即具有Hopfield联想记忆的长短期记忆侧重于存储知识,使用额外的记忆网络来存储和检索模式,使用不同的基于位置的访问机制。我们的模型扩展了LSTM的功能,并在5-way 10-shot任务设置上执行元学习最好,平均准确率约为60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mains Interface Circuit Design for Traveling Wave Tube Amplifier A Passive Technique for Detecting Islanding Using Voltage Sequence Component A Unified Framework for Covariance Adaptation with Multiple Source Domains Advance Sensor for Monitoring Electrolyte Leakage in Lithium-ion Batteries for Electric Vehicles A comparative study of survey papers based on energy efficient, coverage-aware, and fault tolerant in static sink node of WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1