DBU-Net Based Robust Target Detection for Multi-Frame Track-Before-Detect Method

Chuan Zhu, Jie Deng, Xingyue Long, Wei Zhang, Wei Yi
{"title":"DBU-Net Based Robust Target Detection for Multi-Frame Track-Before-Detect Method","authors":"Chuan Zhu, Jie Deng, Xingyue Long, Wei Zhang, Wei Yi","doi":"10.1109/ICCAIS56082.2022.9990429","DOIUrl":null,"url":null,"abstract":"The multi-frame track-before-detect (MF-TBD) method has excellent detection performance for weak targets. However, the statistical characteristics of the merit function after accumulation of multiple consecutive frames are complex, and the setting of the constant false alarm threshold is difficult, especially when the background statistical characteristics are unknown and nonhomogeneous. This paper considers the robust target detection method for MF-TBD. The weak target detection in the merit function domain plane is modeled as binary classification of pixels on the plane. Due to the motivation of classifying pixel points, the U-Net network is selected. Then we improve U-Net into a novel DBU-Net network structure, and train DBU-Net through different merit function domain sample sets. The DBU- Net can effectively detect target in the merit function domain, although the background statistics are unknown and nonhomogeneous. The simulation results demonstrate the superiority and robustness of the detection performance of the method.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The multi-frame track-before-detect (MF-TBD) method has excellent detection performance for weak targets. However, the statistical characteristics of the merit function after accumulation of multiple consecutive frames are complex, and the setting of the constant false alarm threshold is difficult, especially when the background statistical characteristics are unknown and nonhomogeneous. This paper considers the robust target detection method for MF-TBD. The weak target detection in the merit function domain plane is modeled as binary classification of pixels on the plane. Due to the motivation of classifying pixel points, the U-Net network is selected. Then we improve U-Net into a novel DBU-Net network structure, and train DBU-Net through different merit function domain sample sets. The DBU- Net can effectively detect target in the merit function domain, although the background statistics are unknown and nonhomogeneous. The simulation results demonstrate the superiority and robustness of the detection performance of the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于DBU-Net的多帧前跟踪鲁棒目标检测方法
多帧检测前跟踪(MF-TBD)方法对弱目标具有良好的检测性能。然而,累积多个连续帧后的优点函数的统计特征比较复杂,恒定虚警阈值的设置比较困难,特别是在背景统计特征未知且不均匀的情况下。本文研究了MF-TBD的鲁棒目标检测方法。将优点函数域平面上的弱目标检测建模为平面上像素的二值分类。基于像素点分类的动机,选择U-Net网络。然后将U-Net改进为一种新的DBU-Net网络结构,并通过不同的优点函数域样本集对DBU-Net进行训练。DBU- Net在背景统计量未知且不均匀的情况下,仍能有效地检测出目标。仿真结果表明了该方法检测性能的优越性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless Smart Shoes for Running Gait Analysis Based on Deep Learning A quadratic correlation algorithm with variable sets of lags for frequency estimation Deployment of UAVs for Optimal Multihop Ad-hoc Networks Using Particle Swarm Optimization and Behavior-based Control Analyze the Transient Overvoltages in the station of Vietnamese model HVDC-MMC system Dual-scale generalized Radon-Fourier transform family for long time coherent integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1