Design of nano-pattern reflectors for thin-film solar cells based on three-dimensional optical and electrical modeling

H. Hsiao, H. C. Chang, Y. R. Wu
{"title":"Design of nano-pattern reflectors for thin-film solar cells based on three-dimensional optical and electrical modeling","authors":"H. Hsiao, H. C. Chang, Y. R. Wu","doi":"10.1117/12.2079582","DOIUrl":null,"url":null,"abstract":"The optical and electrical properties of a photonic-plasmonic nanostructure on the back contact of thin-film solar cells were investigated numerically through the three-dimensional (3D) finite-difference time-domain method and the 3D Poisson and drift-diffusion solver. The focusing effect and the Fabry-Perot resonances are identified as the main mechanisms for the enhancement of the optical generation rate as well as the short circuit current density. However, the surface topography of certain nanopattern structures is found to reduce the internal electrostatic field of the device, thus limiting charge collection. The optimized conditions for both optics and electronics have been analyzed in this paper.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Optoelectronic Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2079582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The optical and electrical properties of a photonic-plasmonic nanostructure on the back contact of thin-film solar cells were investigated numerically through the three-dimensional (3D) finite-difference time-domain method and the 3D Poisson and drift-diffusion solver. The focusing effect and the Fabry-Perot resonances are identified as the main mechanisms for the enhancement of the optical generation rate as well as the short circuit current density. However, the surface topography of certain nanopattern structures is found to reduce the internal electrostatic field of the device, thus limiting charge collection. The optimized conditions for both optics and electronics have been analyzed in this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三维光学和电学建模的薄膜太阳能电池纳米反射器设计
采用三维时域有限差分方法和三维泊松-漂移-扩散求解器,对薄膜太阳能电池背接触上的光子等离子体纳米结构的光学和电学性质进行了数值研究。聚焦效应和法布里-珀罗共振是提高光产生率和短路电流密度的主要机制。然而,某些纳米结构的表面形貌降低了器件的内部静电场,从而限制了电荷的收集。本文从光学和电子两个方面分析了优化条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and performance of multicore fiber optimized towards communications and sensing applications Gain equalization of FM-EDFA by optimizing ring doping and mode content of the pump with a genetic algorithm Novel method of generation of linear frequency modulation optical waveforms with swept range of over 200 GHz for lidar systems Flexible waveguide enabled single-channel terahertz endoscopic system InGaN LEDs prepared on β-Ga2O3 (-201) substrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1