Adaptive Optimization of the Number of Clusters in Fuzzy Clustering

J. Beringer, E. Hüllermeier
{"title":"Adaptive Optimization of the Number of Clusters in Fuzzy Clustering","authors":"J. Beringer, E. Hüllermeier","doi":"10.1109/FUZZY.2007.4295444","DOIUrl":null,"url":null,"abstract":"In this paper, we present a local, adaptive optimization scheme for adjusting the number of clusters in fuzzy C-means clustering. This method is especially motivated by online applications in which a potentially changing clustering structure must be maintained over time, though it turns out to be useful in the static case as well. As part of the method, we propose a new validity measure for fuzzy partitions which is a modification of the commonly used Xie-Beni index and overcomes some deficiencies thereof.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, we present a local, adaptive optimization scheme for adjusting the number of clusters in fuzzy C-means clustering. This method is especially motivated by online applications in which a potentially changing clustering structure must be maintained over time, though it turns out to be useful in the static case as well. As part of the method, we propose a new validity measure for fuzzy partitions which is a modification of the commonly used Xie-Beni index and overcomes some deficiencies thereof.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊聚类中聚类数的自适应优化
本文提出了一种局部自适应优化方案,用于模糊c均值聚类中聚类数量的调整。这种方法特别适用于在线应用程序,在这些应用程序中,必须随着时间的推移维护可能发生变化的集群结构,尽管事实证明它在静态情况下也很有用。作为该方法的一部分,我们提出了一种新的模糊分区有效性度量,该度量是对常用的Xie-Beni指标的改进,克服了其不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microcalcification Detection in Mammograms Using Interval Type-2 Fuzzy Logic System System of fuzzy relation equations with sup-* composition in semi-linear spaces: minimal solutions Parallel Type-2 Fuzzy Logic Co-Processors for Engine Management Robust H∞ Filtering for Fuzzy Time-Delay Systems Neural Networks for Author Attribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1