C. Pan, Ting Zhang, Tianliang Dai, L. Han, Haojie Xia, Liandong Yu
{"title":"Design and simulation of a 2-DOF parallel linear precision platform utilizing piezoelectric impact drive mechanism","authors":"C. Pan, Ting Zhang, Tianliang Dai, L. Han, Haojie Xia, Liandong Yu","doi":"10.1117/12.2512795","DOIUrl":null,"url":null,"abstract":"With rapid developments of micro/nano science and technology, precision platforms are widely required in the research and industry fields. This paper presents a 2-DOF parallel linear precision platform utilizing piezoelectric impact drive mechanism. With symmetrical flexible structure and specific piezoelectric driving manner, effective and decoupled actuation of the stator is achieved. FEA simulations are conducted to investigate the characteristics of the stator. With established dynamic model of the platform, motion responses of stator and slider in the two directions are simulated and analyzed. With simultaneous actuation of the 2-DOF motions, a motion interaction phenomenon is raised and discussed.","PeriodicalId":115119,"journal":{"name":"International Symposium on Precision Engineering Measurement and Instrumentation","volume":"129 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Precision Engineering Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2512795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
With rapid developments of micro/nano science and technology, precision platforms are widely required in the research and industry fields. This paper presents a 2-DOF parallel linear precision platform utilizing piezoelectric impact drive mechanism. With symmetrical flexible structure and specific piezoelectric driving manner, effective and decoupled actuation of the stator is achieved. FEA simulations are conducted to investigate the characteristics of the stator. With established dynamic model of the platform, motion responses of stator and slider in the two directions are simulated and analyzed. With simultaneous actuation of the 2-DOF motions, a motion interaction phenomenon is raised and discussed.