Incorporating local and global information using a novel distance function for scene recognition

E. Farahzadeh, Tat-Jen Cham, W. Li
{"title":"Incorporating local and global information using a novel distance function for scene recognition","authors":"E. Farahzadeh, Tat-Jen Cham, W. Li","doi":"10.1109/WORV.2013.6521927","DOIUrl":null,"url":null,"abstract":"In the field of scene recognition using only one type of visual feature is not powerful enough to discriminate scene categories. In this paper we propose an innovative method to integrate global and local feature space into a map function based on a novel distance function. A subset of train images denoted as exemplar-set are selected. The local and global distances are defined according to the images in the exemplar-set. Distances are defined such that they indicate the contribution of different semantic aspects and global information in each scene category. An empirical study has been performed on the 15-Scene dataset in order to demonstrate the impact of appropriately incorporating both local and global information for the purpose of scene recognition. The experiments show, our model achieved state-of-the-art accuracy of 87.47.","PeriodicalId":130461,"journal":{"name":"2013 IEEE Workshop on Robot Vision (WORV)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Robot Vision (WORV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORV.2013.6521927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the field of scene recognition using only one type of visual feature is not powerful enough to discriminate scene categories. In this paper we propose an innovative method to integrate global and local feature space into a map function based on a novel distance function. A subset of train images denoted as exemplar-set are selected. The local and global distances are defined according to the images in the exemplar-set. Distances are defined such that they indicate the contribution of different semantic aspects and global information in each scene category. An empirical study has been performed on the 15-Scene dataset in order to demonstrate the impact of appropriately incorporating both local and global information for the purpose of scene recognition. The experiments show, our model achieved state-of-the-art accuracy of 87.47.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合局部和全局信息,使用新的距离函数进行场景识别
在场景识别领域,仅使用一种视觉特征不足以区分场景类别。在本文中,我们提出了一种创新的方法,将全局和局部特征空间整合到一个基于新的距离函数的地图函数中。选择一个子集的列车图像,表示为样本集。根据样本集中的图像定义局部距离和全局距离。距离是这样定义的,它们表明了每个场景类别中不同语义方面和全局信息的贡献。为了证明适当结合本地和全局信息对场景识别的影响,对15个场景数据集进行了实证研究。实验表明,我们的模型达到了87.47的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated tuning of the nonlinear complementary filter for an Attitude Heading Reference observer Sensitivity evaluation of embedded code detection in imperceptible structured light sensing Fast iterative five point relative pose estimation A wireless robotic video laparo-endoscope for minimal invasive surgery Rapid explorative direct inverse kinematics learning of relevant locations for active vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1