Robo Advisory Customer Groups: Who Requires Advice?The authors wish to thank Anselm Hüwe, Andreas Pfingsten (the editor), and an anonymous reviewer for their comments, suggestions, and valuable feedback.

Justus Blaschke, J. Kriebel
{"title":"Robo Advisory Customer Groups: Who Requires Advice?The authors wish to thank Anselm Hüwe, Andreas Pfingsten (the editor), and an anonymous reviewer for their comments, suggestions, and valuable feedback.","authors":"Justus Blaschke, J. Kriebel","doi":"10.5771/0042-059x-2021-3-397","DOIUrl":null,"url":null,"abstract":"Prior literature has often investigated how robo advisors can broaden their customer base. This study is based on the observation that some customers value the risk elicitation of robo advisors (guidance customers), whereas others value other aspects such as the simplicity and convenience of these services. Based on empirical robo advisory data, we build machine learning models to identify guidance customers. The models make predictions based on the financial knowledge of customers to a large extent. The age of a customer, the amount invested, income, and available assets are further important determinants.","PeriodicalId":424989,"journal":{"name":"Die Unternehmung","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Die Unternehmung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5771/0042-059x-2021-3-397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prior literature has often investigated how robo advisors can broaden their customer base. This study is based on the observation that some customers value the risk elicitation of robo advisors (guidance customers), whereas others value other aspects such as the simplicity and convenience of these services. Based on empirical robo advisory data, we build machine learning models to identify guidance customers. The models make predictions based on the financial knowledge of customers to a large extent. The age of a customer, the amount invested, income, and available assets are further important determinants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人咨询客户群体:谁需要咨询?作者希望感谢Anselm h、Andreas Pfingsten(编辑)和一位匿名审稿人的评论、建议和有价值的反馈。
先前的文献经常研究机器人顾问如何扩大他们的客户群。本研究是基于观察到一些客户重视机器人顾问(指导客户)的风险引出,而其他人则重视其他方面,如这些服务的简单性和便利性。基于经验机器人咨询数据,我们建立了机器学习模型来识别引导客户。该模型在很大程度上基于客户的金融知识进行预测。客户的年龄、投资金额、收入和可用资产是更重要的决定因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Methods as Components of Existing Business Models Advancements in ML-Enabled Intelligent Document Processing and How to Overcome Adoption Challenges in Enterprises Künstliche Intelligenz im Marketing: Möglichkeiten und Herausforderungen Predictive Modeling in Marketing: Ensemble Methods for Response Modeling 75 Jahre DIE UNTERNEHMUNG – Kontinuität im Wandel der BWL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1