Predictive Modeling in Marketing: Ensemble Methods for Response Modeling

Gabriela Alves Werb, Martin Schmidberger
{"title":"Predictive Modeling in Marketing: Ensemble Methods for Response Modeling","authors":"Gabriela Alves Werb, Martin Schmidberger","doi":"10.5771/0042-059x-2021-3-376","DOIUrl":null,"url":null,"abstract":"Ensemble methods have received a great deal of attention in the past years in several disciplines. One reason for their popularity is their ability to model complex relationships in large volumes of data, providing performance improvements compared to traditional methods. In this article, we implement and assess ensemble methods’ performance on a critical predictive modeling problem in marketing: predicting cross-buying behavior. The best performing model, a random forest, manages to identify 73.3 % of the cross-buyers in the holdout data while maintaining an accuracy of 72.5 %. Despite its superior performance, researchers and practitioners frequently mention the difficulty in interpreting a random forest model’s results as a substantial barrier to its implementation. We address this problem by demonstrating the usage of interpretability methods to: (i) outline the most influential variables in the model; (ii) investigate the average size and direction of their marginal effects; (iii) investigate the heterogeneity of their marginal effects; and (iv) understand predictions for individual customers. This approach enables researchers and practitioners to leverage the superior performance of ensemble methods to support data-driven decisions without sacrificing the interpretability of their results.","PeriodicalId":424989,"journal":{"name":"Die Unternehmung","volume":"11 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Die Unternehmung","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5771/0042-059x-2021-3-376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ensemble methods have received a great deal of attention in the past years in several disciplines. One reason for their popularity is their ability to model complex relationships in large volumes of data, providing performance improvements compared to traditional methods. In this article, we implement and assess ensemble methods’ performance on a critical predictive modeling problem in marketing: predicting cross-buying behavior. The best performing model, a random forest, manages to identify 73.3 % of the cross-buyers in the holdout data while maintaining an accuracy of 72.5 %. Despite its superior performance, researchers and practitioners frequently mention the difficulty in interpreting a random forest model’s results as a substantial barrier to its implementation. We address this problem by demonstrating the usage of interpretability methods to: (i) outline the most influential variables in the model; (ii) investigate the average size and direction of their marginal effects; (iii) investigate the heterogeneity of their marginal effects; and (iv) understand predictions for individual customers. This approach enables researchers and practitioners to leverage the superior performance of ensemble methods to support data-driven decisions without sacrificing the interpretability of their results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
市场营销中的预测建模:响应建模的集成方法
近年来,集成方法在一些学科中受到了极大的关注。它们受欢迎的一个原因是它们能够在大量数据中建模复杂关系,与传统方法相比,提供性能改进。在本文中,我们在市场营销中的一个关键预测建模问题上实现并评估集成方法的性能:预测交叉购买行为。表现最好的模型是随机森林,它能够识别出滞留数据中73.3%的交叉买家,同时保持72.5%的准确性。尽管它的性能优越,但研究人员和实践者经常提到解释随机森林模型结果的困难是其实施的实质性障碍。我们通过演示可解释性方法的使用来解决这个问题:(i)概述模型中最具影响力的变量;(ii)研究其边际效应的平均大小和方向;(iii)研究其边际效应的异质性;(iv)了解个人客户的预测。这种方法使研究人员和实践者能够利用集成方法的优越性能来支持数据驱动的决策,而不会牺牲其结果的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Methods as Components of Existing Business Models Advancements in ML-Enabled Intelligent Document Processing and How to Overcome Adoption Challenges in Enterprises Künstliche Intelligenz im Marketing: Möglichkeiten und Herausforderungen Predictive Modeling in Marketing: Ensemble Methods for Response Modeling 75 Jahre DIE UNTERNEHMUNG – Kontinuität im Wandel der BWL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1