Local search algorithm to improve the local search

M. Tounsi, P. David
{"title":"Local search algorithm to improve the local search","authors":"M. Tounsi, P. David","doi":"10.1109/TAI.2002.1180836","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new cooperative framework based on using successively two local search algorithms to solve constraint satisfaction and optimization problems. Our technique is based on the integration of local search algorithms as a mechanism to diversify the search instead of using a build on diversification mechanisms. Thus we avoid tuning the multiple parameters to escape from a local optimum. This technique improves the existing methods: it is generic especially when the given problem can be expressed as a constraint satisfaction problem. We present the way the local search algorithm can be used to diversify the search in order to solve real examination timetabling problems. We describe how the local search algorithm can be used to assist any other specific local search algorithm to escape from local optimality.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present a new cooperative framework based on using successively two local search algorithms to solve constraint satisfaction and optimization problems. Our technique is based on the integration of local search algorithms as a mechanism to diversify the search instead of using a build on diversification mechanisms. Thus we avoid tuning the multiple parameters to escape from a local optimum. This technique improves the existing methods: it is generic especially when the given problem can be expressed as a constraint satisfaction problem. We present the way the local search algorithm can be used to diversify the search in order to solve real examination timetabling problems. We describe how the local search algorithm can be used to assist any other specific local search algorithm to escape from local optimality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部搜索算法,改进局部搜索
本文提出了一种基于连续使用两种局部搜索算法来解决约束满足和优化问题的协作框架。我们的技术是基于局部搜索算法的集成作为多样化搜索的机制,而不是使用多样化机制的构建。因此,我们避免了调整多个参数以逃避局部最优。这种技术改进了现有的方法:它是通用的,特别是当给定的问题可以表示为约束满足问题时。为了解决实际的考试排课问题,我们提出了一种利用局部搜索算法进行多样化搜索的方法。我们描述了如何使用局部搜索算法来帮助任何其他特定的局部搜索算法摆脱局部最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine learning for software engineering: case studies in software reuse Active tracking and cloning of facial expressions using spatio-temporal information Fusing cooperative technical-specification knowledge components Ontology construction for information selection An intelligent brokering system to support multi-agent Web-based 4/sup th/-party logistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1