Interactive Data Mashups for User-Centric Data Analysis

M. Behringer, Pascal Hirmer
{"title":"Interactive Data Mashups for User-Centric Data Analysis","authors":"M. Behringer, Pascal Hirmer","doi":"10.1145/3603719.3603742","DOIUrl":null,"url":null,"abstract":"Nowadays, the amount of data is growing rapidly. Through data mining and analysis, information and knowledge can be derived based on this growing volume of data. Different tools have been introduced in the past to specify data analysis scenarios in a graphical manner, for instance, PowerBI, Knime, or RapidMiner. However, when it comes to specifying complex data analysis scenarios, e.g., in larger companies, domain experts can easily become overwhelmed by the extensive functionality and configuration possibilities of these tools. In addition, the tools vary significantly regarding their powerfulness and functionality, which could lead to the need to use different tools for the same scenario. In this demo paper, we introduce our novel user-centric interactive data mashup tool that supports domain experts in interactively creating their analysis scenarios and introduces essential functionalities that are lacking in similar tools, such as direct feedback of data quality issues or recommendation of suitable data sources not yet considered.","PeriodicalId":314512,"journal":{"name":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 35th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603719.3603742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the amount of data is growing rapidly. Through data mining and analysis, information and knowledge can be derived based on this growing volume of data. Different tools have been introduced in the past to specify data analysis scenarios in a graphical manner, for instance, PowerBI, Knime, or RapidMiner. However, when it comes to specifying complex data analysis scenarios, e.g., in larger companies, domain experts can easily become overwhelmed by the extensive functionality and configuration possibilities of these tools. In addition, the tools vary significantly regarding their powerfulness and functionality, which could lead to the need to use different tools for the same scenario. In this demo paper, we introduce our novel user-centric interactive data mashup tool that supports domain experts in interactively creating their analysis scenarios and introduces essential functionalities that are lacking in similar tools, such as direct feedback of data quality issues or recommendation of suitable data sources not yet considered.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于以用户为中心的数据分析的交互式数据混搭
如今,数据量正在迅速增长。通过数据挖掘和分析,可以从不断增长的数据量中获得信息和知识。过去已经引入了不同的工具,以图形化的方式指定数据分析场景,例如PowerBI、Knime或RapidMiner。然而,当涉及到指定复杂的数据分析场景时,例如,在大型公司中,领域专家很容易被这些工具的广泛功能和配置可能性所淹没。此外,这些工具在功能和功能方面差异很大,这可能导致需要为相同的场景使用不同的工具。在这篇演示论文中,我们介绍了我们新颖的以用户为中心的交互式数据mashup工具,该工具支持领域专家以交互方式创建他们的分析场景,并引入了类似工具所缺乏的基本功能,例如对数据质量问题的直接反馈或对尚未考虑的合适数据源的推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SciDG: Benchmarking Scientific Dynamic Graph Queries ST-CopulaGNN : A Multi-View Spatio-Temporal Graph Neural Network for Traffic Forecasting A Long-term Time Series Forecasting method with Multiple Decomposition Early ICU Mortality Prediction with Deep Federated Learning: A Real-World Scenario Privacy-Preserving Redaction of Diagnosis Data through Source Code Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1