SVD based Image Actual Resolution Estimation

Shiqiang Zheng, Lizhe Duan, Wenguang Hou, D. Kurlovich
{"title":"SVD based Image Actual Resolution Estimation","authors":"Shiqiang Zheng, Lizhe Duan, Wenguang Hou, D. Kurlovich","doi":"10.1109/aemcse55572.2022.00115","DOIUrl":null,"url":null,"abstract":"Image up-sampling is a fundamental operation in image processing, which enlarges the size of original image. Though the upsampled image may look better, it contains the same information as the original and requires more computation and storage. To accurately determine the actual resolution of the upsampled image is challenging with few previous studies to be investigated. Here, we proposed a method for estimating the actual resolution of an image based on Singular Value Decomposition (SVD). The proposed method generates multi-resolution images by SVD, and find the peak difference among each level image’s eigenvalues, where the level image below the actual resolution cannot keep enough feature information. The approach is model-free and does not rely on any user-defined parameters. We demonstrate its feasibility on a wide variety of datasets. Finally, we show how our method can be utilized to compress images effectively.","PeriodicalId":309096,"journal":{"name":"2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aemcse55572.2022.00115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image up-sampling is a fundamental operation in image processing, which enlarges the size of original image. Though the upsampled image may look better, it contains the same information as the original and requires more computation and storage. To accurately determine the actual resolution of the upsampled image is challenging with few previous studies to be investigated. Here, we proposed a method for estimating the actual resolution of an image based on Singular Value Decomposition (SVD). The proposed method generates multi-resolution images by SVD, and find the peak difference among each level image’s eigenvalues, where the level image below the actual resolution cannot keep enough feature information. The approach is model-free and does not rely on any user-defined parameters. We demonstrate its feasibility on a wide variety of datasets. Finally, we show how our method can be utilized to compress images effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SVD的图像实际分辨率估计
图像上采样是图像处理中的一项基本操作,它可以放大原始图像的大小。虽然上采样后的图像看起来更好,但它包含的信息与原始图像相同,需要更多的计算和存储空间。准确确定上采样图像的实际分辨率是具有挑战性的,以往的研究很少。本文提出了一种基于奇异值分解(SVD)的图像实际分辨率估计方法。该方法通过奇异值分解生成多分辨率图像,并找出每个级别图像特征值之间的峰值差,其中低于实际分辨率的级别图像无法保留足够的特征信息。该方法是无模型的,不依赖于任何用户定义的参数。我们在各种各样的数据集上证明了它的可行性。最后,我们展示了如何利用我们的方法有效地压缩图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Division of dataset into training and validation subsets by the jackknife validations to predict the pH optimum for beta-cellobiosidase Research on the evaluation method of virtual clothing pressure comfort based on fuzzy clustering Mechanical properties of interconnection interfaces in micro tin-silver-copper solder joints Clustering-based Interference Suppression Algorithm for UWB Localization Bridge Crack Detection Based on Image Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1